Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trials ; 21(1): 324, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32290852

RESUMEN

BACKGROUND: The dramatic increase in the prevalence of type 2 diabetes mellitus (T2DM) is a global major challenge to health. Circulating microRNAs have been suggested as promising biomarkers for different disorders such as diabetes. Imbalances in the gut microbiome have been revealed to contribute to the progression of multiple diseases including T2DM. Recently, the consumption of probiotics and synbiotics in the treatment of various diseases has shown a substantial growth. The anti-diabetes and anti-inflammatory effects of synbiotics have been indicated, which may be due to their beneficial effects on the gut microbiome. However, further research is needed to assess the effects of synbiotics on the microbiota and their impacts on expression of microRNAs relating to T2DM. Thus, we will aim to assess the effects of synbiotics on microbiota, serum level of tumor necrosis factor-α (TNF-α), and expression of microRNA-126 and microRNA-146a in patients with T2DM. METHODS: Seventy-two patients with T2DM will be recruited in this double-blind randomized parallel placebo-controlled clinical trial. After block matching based on age and sex, participants will be randomly assigned to receive 1000 mg/day synbiotic (Familact) or placebo for 12 weeks. The microRNA-126 and microRNA-146a expression levels will be measured by real-time polymerase chain reaction and serum TNF-α level will be assessed by enzyme-linked immunosorbent assay kit at the beginning and at the end of the study. Determination of the gut microbiota will be done by quantitative polymerase chain reaction methods at baseline and at the end of the trial. Biochemical assessments (glycemic and lipid profiles) will also be conducted at onset and end of the study. DISCUSSION: This is the first randomized controlled trial that will determine the effect of synbiotic supplementation on the gut microbiota and its probable impacts on serum levels of TNF-α and expression of related microRNAs in patients with T2DM. TRIAL REGISTRATION: Iranian Registry of Clinical Trials: IRCT20180624040228N2. Registered on 27 March 2019. http://www.irct.ir/trial/38371.


Asunto(s)
Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal , MicroARNs/metabolismo , Simbióticos/administración & dosificación , Factor de Necrosis Tumoral alfa/sangre , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Dietéticos , Método Doble Ciego , Humanos , Irán , Probióticos/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Colloids Surf B Biointerfaces ; 126: 297-302, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25601794

RESUMEN

The main aim of this study was to evaluate the uptake of E6 mRNA antisense into cervical cancer cells, induced by human papilloma virus (HPV). In this study, the carrier of the antisense was tri-calcium phosphate nanoparticles (TCP NPs) conjugated with dioleoyl phosphatidyl ethanolamine (DOPE) and/or anti-E6 antibody. At first, TCP NPs were synthesized, coated with carboxy-polyethylene glycol, and then conjugated with anti-E6 antibody and/or DOPE by carbodiimide cross-linker. Then, a single stranded DNA, which was complementary (antisense) of E6 mRNA, was attached to each one. Finally, the uptake of conjugated and unconjugated TCP NPs into HelaS3 cells was separately evaluated by Fourier transform infrared spectroscopy, optical microscopy, and fluorescent microscopy. Also, the cytotoxicity of these carriers was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Overall, 4 types of TCP NPs were used in this study, including 1) TCP NPs conjugated with DOPE (TCP NPs/DOPE), 2) TCP NPs conjugated with DOPE and antibody (TCP NPs/DOPE/Anti-E6 Ab), 3) TCP NPs conjugated with antibody (TCP NPs/Anti-E6 Ab), and 4) TCP NPs which not conjugated with DOPE and antibody (unconjugated TCP NPs). Uptake tests showed that although all types of TCP NPs could transfer antisense of E6 mRNA into HelaS3 cells, TCP NPs/DOPE and TCP NPs/DOPE/Anti-E6 Ab had more uptake than TCP NPs/Anti-E6 Ab and unconjugated TCP NPs. Moreover, MTT assay showed that TCP NPs/DOPE was more toxic than TCP NPs/DOPE/Anti-E6 Ab, TCP NPs/Anti-E6 Ab, and unconjugated TCP NPs. It can be concluded that TCP NPs/DOPE/Anti-E6 Ab is a good choice for oligonucleotide delivery, because of higher uptake and less toxicity, compared with other formulations.


Asunto(s)
Anticuerpos/química , Fosfatos de Calcio/química , Nanopartículas/química , Proteínas Oncogénicas Virales/química , Fosfatidiletanolaminas/química , ARN sin Sentido/química , ARN Mensajero/química , Proteínas Represoras/química , Células HeLa , Humanos , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA