Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 22(4): 488-497, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32435938

RESUMEN

This study provides a preliminary characterization of a metallothionein (MT) gene in Septifer virgatus and highlights its potential use in biomonitoring. The full-length SvMT cDNA and the complete sequence of the SvMT gene were identified using reverse transcriptase PCR coupled with the rapid amplification of cDNA ends and the primer walking method. The SvMT cDNA encodes a protein of 72 amino acids having nine classical Cys-X-Cys motifs. Moreover, the deduced amino acids contained the conserved motif (Cys-x-Cys-x(3)-Cys-Thr-Gly-x(3)-Cys-x-Cys-x(3)-Cys-x-Cys-Lys) of MT family 2. Its molecular mass and isoelectric point were estimated to be 7.01 kDa and 7.00, respectively. BLAST-based searching indicated that SvMT shared 81.0% amino acid sequence identity with Mytilus edulis MT-20-II. The SvMT gene has three coding exons and two introns. After exposure to 1 mg/L cadmium chloride, the expression of SvMT increased 15-fold by 3 days (d), with a maximum expression of 27-fold by 5 d compared with the pre-exposure level. After exposure to 2 mg/L zinc chloride, the expression of SvMT increased 2.5-fold by 3 d and 4.7-fold by 5 d compared with the pre-exposure level. A significant increase in the expression level of SvMT mRNA was observed after the exposure of S. virgatus to the combination of 0.003 mg/L cadmium chloride and 0.2 mg/L zinc chloride compared with the pre-exposure level. Our work indicates that the SvMT gene is associated with stress responses and could be a potential biomarker for marine pollution.


Asunto(s)
Metalotioneína/genética , Mytilidae/genética , Secuencia de Aminoácidos , Animales , Cloruro de Cadmio/toxicidad , Cloruros/toxicidad , ADN Complementario , Biomarcadores Ambientales , Metalotioneína/química , Metalotioneína/metabolismo , Mytilidae/efectos de los fármacos , Mytilidae/metabolismo , Contaminación Química del Agua , Compuestos de Zinc/toxicidad
2.
J Plant Res ; 126(1): 51-61, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22644314

RESUMEN

Various mechanisms are involved in detoxification of heavy metals such as lead (Pb) in plant cells. Most of the Pb taken up by plants accumulates in their roots. However, the detailed properties of Pb complexes in roots remain unclear. We have investigated the properties of Pb deposits in root cell walls of radish (Raphanus sativus L.) seedlings grown on glass beads bed containing Pb pellets, which are the source of Pb-contamination in shooting range soils. Pb deposits were tightly bound to cell walls. Cell wall fragments containing about 50,000 ppm Pb were prepared from the roots. After extracting Pb from the cell wall fragments using HCl, Pb ions were recombined with the Pb-extracted cell wall fragments in a solution containing Pb acetate. When the cell wall fragments were treated with pectinase (E.C. 3.2.1.15) and were chemically modified with 1-ethyl-3-dimethylamino-propylcarboimide, the Pb-rebinding ability of the treated cell wall fragments decreased. When acid-treated cell wall fragments were incubated in a solution containing Pb(2+) and excess amounts of a chelating agent, Pb recombined with the cell wall fragments were measured to estimate the affinity between Pb(2+) and the cell wall fragments. Our data show that Pb(2+) binds to carboxyl groups of cell walls. The source of the carboxyl groups is suggested to be pectic compounds. A stability constant of the Pb-cell wall complex was estimated to be about 10(8). The role of root cell walls in the mechanism underlying heavy metal tolerance was discussed.


Asunto(s)
Pared Celular/metabolismo , Plomo/metabolismo , Raíces de Plantas/metabolismo , Raphanus/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Inactivación Metabólica/fisiología , Pectinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/metabolismo
3.
J Plant Res ; 118(5): 355-9, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16177838

RESUMEN

Common buckwheat grown in Pb-contaminated soil was found to accumulate a large amount of Pb in its leaves (8,000 mg/kg DW), stem (2,000 mg/kg DW), and roots (3,300 mg/kg DW), without significant damage. This indicates that buckwheat is a newly recognized Pb hyperaccumulator, which is defined as a plant containing over 1,000 mg/kg of Pb in its shoots on a dry-weight basis. Moreover, it was shown that application of the biodegradable chelator methylglycinediacetic acid trisodium salt at concentrations of up to 20 mmol/kg resulted in a more than five times higher concentration of Pb in the shoot without notable growth inhibitation at up to 10 mmol/kg. These results indicate that buckwheat is a potential phytoremediator of Pb-contaminated soils.


Asunto(s)
Adaptación Fisiológica , Fagopyrum/metabolismo , Plomo/metabolismo , Fagopyrum/crecimiento & desarrollo , Fagopyrum/fisiología , Plomo/análisis , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA