Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Molecules ; 27(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35408565

RESUMEN

Weeds are an important source of natural products; with promising biological activity. This study investigated the anti-kinetoplastida potential (in vitro) to evaluate the cytotoxicity (in vitro) and antioxidant capacity of the essential oil of Rhaphiodon echinus (EORe), which is an infesting plant species. The essential oil was analyzed by GC/MS. The antioxidant capacity was evaluated by reduction of the DPPH radical and Fe3+ ion. The clone Trypanosoma cruzi CL-B5 was used to search for anti-epimastigote activity. Antileishmanial activity was determined using promastigotes of Leishmania braziliensis (MHOM/CW/88/UA301). NCTC 929 fibroblasts were used for the cytotoxicity test. The results showed that the main constituent of the essential oil was γ-elemene. No relevant effect was observed concerning the ability to reduce the DPPH radical; only at the concentration of 480 µg/mL did the essential oil demonstrate a high reduction of Fe3+ power. The oil was active against L. brasiliensis promastigotes; but not against the epimastigote form of T. cruzi. Cytotoxicity for mammalian cells was low at the active concentration capable of killing more than 70% of promastigote forms. The results revealed that the essential oil of R. echinus showed activity against L. brasiliensis; positioning itself as a promising agent for antileishmanial therapies.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Lamiaceae , Leishmaniasis Mucocutánea , Aceites Volátiles , Trypanosoma cruzi , Animales , Antioxidantes/farmacología , Antiprotozoarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Mamíferos , Aceites Volátiles/farmacología
2.
Antioxidants (Basel) ; 11(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35204302

RESUMEN

Thiazolidine compounds NJ20 {(E)-2-(2-(5-bromo-2-methoxybenzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole} and NW05 [(2-(benzo (d) (1,3) dioxol-4-ylmethylene)-N-(4-bromophenyl)-thiosemicarbazone] potentiated the effect of norfloxacin in resistant bacteria; however, there are no reports on their effects on Nauphoeta cinerea in the literature. The objective of this work was to evaluate the behavioral effects and oxidative markers of NW05 and NJ20 in lobster cockroach N. cinerea. To evaluate the behavioral study, a video tracking software was used to evaluate the locomotor points and the exploratory profile of cockroaches in the horizontal and vertical regions of a new environment. The total concentration of thiol and reduced glutathione (GSH), substances reactive to thiobarbituric acid (TBARS), free iron (II) content and mitochondrial viability were determined. The antioxidant potential was evaluated by the DPPH method. Both substances induced changes in the behavior of cockroaches, showing a significant reduction in the total distance covered and in the speed. In the cell viability test (MTT), there was a significant reduction for NJ20 (1 mM). NJ20 caused a significant increase in total levels of thiol and non-protein thiol (NPSH), although it also slightly increased the content of malondialdehyde (MDA). Both compounds (NW05 and NJ20) caused a significant reduction in the content of free iron at a concentration of 10 mM. In conclusion, the compound NJ20 caused moderate neurotoxicity (1 mM), but had good antioxidant action, while NW05 did not show toxicity or significant antioxidant activity in the model organism tested. It is desirable to carry out complementary tests related to the antioxidant prospection of these same compounds, evaluating them at different concentrations.

3.
Drug Chem Toxicol ; 45(4): 1687-1697, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33334193

RESUMEN

The Triplaris gardneriana Wedd. seeds extract has great therapeutic potential due to numerous biological activities such as antioxidant, antibacterial and anti-inflammatory, which are associated with phenolic content. Although this herbal preparation has shown many benefits, recently their toxicity profile has begun to be explored. In this present study, the toxic effects of T. gardneriana seeds ethanolic extract (EETg) on biological systems of different taxonomical groups and levels of complexity (from cell culture to lower vertebrates) were assessed, through a variety of viability and toxicological assays. It was found that EETg did not impair the Saccharomyces cerevisiae growth at the highest tested concentration (200 µg/mL), and no toxicant evidence was observed in Aedes aegypti larvae or in Drosophila melanogaster adult stage. Contrarily, the extract reduced the viability of undifferentiated Caco-2 cells (250 µg/mL, 40% of viable cells), but did not affect differentiated ones. The embryotoxicity in Danio rerio model showed a LC50 of 7.41 mg/L (95% confidence interval, 4.78 - 11.49 mg/L). EETg did not show signs of toxicity in the majority of the models used, but lethality and malformations in zebrafish embryos occurred. Further analyses are needed to better understand the selective toxicity mechanism of EETg on zebrafish, as well as whether the toxic effects happen in higher vertebrates.


Asunto(s)
Polygonaceae , Pez Cebra , Animales , Células CACO-2 , Drosophila melanogaster , Embrión no Mamífero , Etanol , Humanos , Larva , Extractos Vegetales/toxicidad , Semillas/toxicidad
4.
Drug Dev Ind Pharm ; 46(6): 1026-1033, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32393135

RESUMEN

Objective: Considering the limited number of studies that analyze the behavior of plant preparations in human body, this study aimed to characterize the phenolic compounds from Triplaris gardneriana extract (EETg) in terms of antioxidant and metabolic aspects, integrating in vitro, in silico and in vivo strategies.Methods: EETg was analyzed in relation to polyphenols release from the plant matrix under in vitro digestion, as well as the pharmacokinetic prediction of their major compounds by in silico simulation and understanding of its in vivo antioxidant effect in an alternative animal model.Results: About 35.22% of polyphenols from EETg proved to be accessible after enzymatic hydrolysis. A kinetics study showed that 40% of the total content of these phytochemicals was released from the extract accompanied by increased antioxidant capacity after 180 min of gastrointestinal simulation. A computational approach revealed that 7 out of 9 major phenolic compounds of EETg showed good pharmacokinetic parameters such as intestinal absorption and bioavailability score. In addition, the extract showed a protective effect on copper-induced oxidative stress in Drosophila melanogaster, evidenced by the restoration of basal levels of thiol and malondialdehyde contents. These biochemical observations were supported by the examination of histological features of D. melanogaster brain.Conclusion: It was demonstrated that the oral administration of EETg would provide phenolic compounds partially absorbable by the human gut and capable of providing health benefits associated with the inhibition of oxidative stress. Additionally, the results highlight the need to implement new approaches for the rational development of plant-based medicines.


Asunto(s)
Drosophila melanogaster , Polygonaceae , Polifenoles/metabolismo , Animales , Antioxidantes , Estrés Oxidativo , Extractos Vegetales , Polifenoles/química , Semillas/química
5.
Antibiotics (Basel) ; 9(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012710

RESUMEN

The emergence of fungal resistance to commercial drugs has been a major problem for the WHO. In this context, research with natural products is promising in the discovery of new active substances. Thus, this work evaluated the antifungal effect of a medicinal plant (i.e., Mesosphaerum suaveolens) against strains of the genus Candida, tested the combined effect with the drug fluconazole, and, finally, determined the phenolic constituents present in the species. Initially, aqueous extracts of leaves (AELMs) and aerial parts (AEAPMs) of the species were prepared. For microbiological assays, the minimum fungicidal concentration was determined by broth microdilution, and the combined effect of fluconazole extracts were verified by sub-inhibitory microdilution concentrations (CFM/8) followed by spectrophotometric readings which were used to determine the IC50. HPLC detected the presence of flavonoids and phenolic acids, detecting eight compounds present in the samples of which caffeic acid and quercetin were major components. The AELMs modulated fluconazole activity since it decreased fluconazole's IC50 from 7.8 µg/mL to an IC50 of 4.7 µg/mL (CA LM 77) and from 28.8 µg/mL to 18.26 µg/mL (CA INCQS 40006) for the C. albicans strains. The AEAPMs were able to potentiate the effect of fluconazole more effectively than the AELMs. Such an effect was significant for the 16 µg/mL concentration for CA LM 77 and 32 µg/mL for CA INCQS 40006. The AEAPMs as well as the AELMs presented clinically relevant activities for C. tropicalis strains. For the C. tropicalis LM 23 strain, the AEPMs obtained an IC50 of 25 µg/mL and the AELMs an IC50 of 359.9 µg/mL.

6.
J Ethnopharmacol ; 242: 112026, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31260758

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Disturbed mitochondrial function and energy crisis serve as key mechanisms for the development of liver injury. Hence, targeting cellular mitochondria in liver diseases might serve as a therapeutic option. Tapinanthus globifer (A.Rich.) Tiegh. has been used in traditional medicine in the management of liver disease. However, there is no scientific evidence supporting such use. AIM OF THE STUDY: The current investigation was designed to evaluate the protective role of Tapinanthus globifer treatment on the liver mitochondrial function after the induction of hepatotoxicity by the hepatotoxic agent Fe2+in vitro. MATERIALS AND METHODS: In this study, isolated mitochondria from rats' liver was incubated with Fe2+ (10 µM) for 1 h in the absence or presence of T. globifer (50, 100 and 200 µg/mL) metanolic extract (MVA). Mitochondrial viability, mitochondrial membrane potential (ΔΨm), mitochondrial swelling (MPTP)., total thiol content, lipid peroxidation (TBARS) and reactive oxygen species (ROS) production were measured. HPLC-DAD was used to identify potential phytochemicals in MVA. RESULTS: (MVA) was able to improve mitochondrial dysfunction induced by Fe2+, by attenuating MTT reduction, increased ΔΨm and mitochondrial swelling. Reduced total thiol and non-protein thiol contents which were associated with increased lipid peroxidation and ROS generation in Fe2+-treated mitochondria were significantly improved by MVA co-treatment. HPLC-DAD analysis revealed the presence of gallic acid, catechin, epigallocatechin, caffeic acid, rutin, glycoside flavonoid and quercetin in MVA that can be responsible for its beneficial effect. CONCLUSION: MVA phyto-compounds enhance mitochondrial redox signaling and possess mitochondrial function improving potential, thereby, providing scientific basis for its use in traditional medicine.


Asunto(s)
Loranthaceae , Mitocondrias Hepáticas/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Hierro/toxicidad , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/fisiología , Dilatación Mitocondrial/efectos de los fármacos , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/química , Hojas de la Planta , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-31174689

RESUMEN

Phytochemical prospecting was performed by HPLC-DAD. The Inhibitory Concentration of 50% of mortality the microorganisms (IC50) was determined and a cell viability curve was obtained. Minimum Fungicidal Concentration (MFC) was determined by subculture in Sabourad Dextrose Agar. The effect of the combination extract/fluconazole was verified by microdilution, with the extracts in subinhibitory concentrations (MFC/16). Caffeic acid was the major compound of both extracts, representing 6.08% in the aqueous extract and 7.62% in the ethanolic extract. The extracts showed a fungistatic effect (MFC ≥ 16,384 µg/mL). The IC50 results demonstrated that the combination of the extracts with fluconazole were more significant than the products tested alone, with values from 4.9 to 34.8 µg/mL for the ethanolic extract/fluconazole and 5 to 84.7 µg/mL for the aqueous extract/fluconazole. The potentiating effect of fluconazole action was observed against C. albicans and C. tropicalis. In C. krusei the aqueous extract had an antagonistic effect.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Antifúngicos/química , Ácidos Cafeicos/farmacología , Descubrimiento de Drogas , Sinergismo Farmacológico , Fluconazol/farmacología , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plantas Medicinales/química
8.
Medicina (Kaunas) ; 55(5)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126036

RESUMEN

Background and objectives: Natural products such as essential oils with antioxidant potential can reduce the level of oxidative stress and prevent the oxidation of biomolecules. In the present study, we investigated the antioxidant potential of Lantana montevidensis leaf essential oil (EOLM) in chemical and biological models using Drosophila melanogaster. Materials and methods: in addition, the chemical components of the oil were identified and quantified by gas chromatography coupled to mass spectrometry (GC-MS), and the percentage compositions were obtained from electronic integration measurements using flame ionization detection (FID). Results: our results demonstrated that EOLM is rich in terpenes with Germacrene-D (31.27%) and ß-caryophyllene (28.15%) as the major components. EOLM (0.12-0.48 g/mL) was ineffective in scavenging DPPH radical, and chelating Fe(II), but showed reducing activity at 0.24 g/mL and 0.48 g/mL. In in vivo studies, exposure of D. melanogaster to EOLM (0.12-0.48 g/mL) for 5 h resulted in 10% mortality; no change in oxidative stress parameters such as total thiol, non-protein thiol, and malondialdehyde contents, in comparison to control (p > 0.05). Conclusions: taken together, our results indicate EOLM may not be toxic at the concentrations tested, and thus may not be suitable for the development of new botanical insecticides, such as fumigants or spray-type control agents against Drosophila melanogaster.


Asunto(s)
Drosophila melanogaster/química , Lantana/toxicidad , Animales , Antioxidantes/farmacocinética , Antioxidantes/uso terapéutico , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Lantana/metabolismo , Aceites Volátiles/farmacocinética , Aceites Volátiles/toxicidad , Extractos Vegetales/farmacocinética , Extractos Vegetales/toxicidad
9.
BMC Complement Altern Med ; 19(1): 80, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943970

RESUMEN

BACKGROUND: Organochalcogen compounds have attracted the interest of a multitude of studies for their promising Pharmacological and biological activities. The antioxidant activity and acute toxicity of an organoselenium compound, 1-(2-(2-(2-(1-aminoethyl)phenyl)diselanyl)phenyl)ethanamine (APDP) was determined in mice. METHODS: Mice were randomly divided into four groups, with each group comprising of seven animals. Canola oil (1ml/kg of body weight) was administered to 1st group, while 2nd, 3rd & 4th groups were administered with 10 mg/kg, 30 mg/kg & 350 mg/kg of APDP respectively. APDP was administered by Intragastric gavage as a single oral dose. RESULTS: The APDP oral administration was found to be safe up to 350 mg/kg of body weight and no deaths of animals were recorded. The lethal dose 50 (LD50) for APDP was determined at 72 h and was estimated to be > 350 mg/kg. After acute treatment, all mice were sacrificed by decapitation to determine the antioxidant enzymes and lipid peroxidation values for the treated mice liver. No fluctuation in lipid peroxidation, vitamin C and non protein thiol (NPSH) levels was observed due to the administration of APDP. hepatic α-ALA-D activity, catalase (CAT), superoxide dismutase (SOD) and the biochemical parameters were evaluated. Experimental observation demonstrated that APDP protected Fe(II) induced thiobarbituric acid reactive substances (TBARS) production in liver homogenate significantly (p < 0.05). The administration of APDP (an amine-based diselenide) both in vitro and in vivo clearly demonstrated that this potential compound has no acute toxicity towards mice among all the tested parameter. CONCLUSION: On the basis of experimental results, it is concluded that APDP is a potential candidate as an antioxidant compound for studying pharmacological properties.


Asunto(s)
Compuestos de Organoselenio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fenetilaminas/toxicidad , Administración Oral , Animales , Antioxidantes/análisis , Dosificación Letal Mediana , Peroxidación de Lípido/efectos de los fármacos , Hígado/química , Hígado/efectos de los fármacos , Masculino , Ratones , Compuestos de Organoselenio/administración & dosificación , Fenetilaminas/administración & dosificación
10.
Chem Biol Interact ; 282: 77-84, 2018 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-29339219

RESUMEN

The effects of caffeine supplementation is well documented in conventional animal models, however, in the lobster cockroaches Nauphoeta cinerea, they have not been reported. Thus, the aim of this study was to investigate the locomotor behavior and biochemical endpoints in the head of the nymphs of N. cinerea following 60 days exposure to food supplemented with 0, 0.5, 1.0, 2.5, 5.0 and 10.0 mg of caffeine/g of diet. The analysis of the locomotor behavior using the video-tracking software, Any-maze, for 12 min revealed that caffeine supplementation caused significant behavioral improvement. There was increase in distance travelled, velocity, frequency of rotation and turn angle (stereotypical behavior such as circling movements), and this was supported by the representative track plots of the path travelled by cockroaches in the open-field arena. In addition, caffeine supplementation markedly increased total thiol and non-protein thiol glutathione (GSH) levels in the heads of cockroaches, and this was in parallel with significant reduction of lipid peroxidation and free Fe(II) content. Taking together, our results indicate that long-term caffeine supplementation may exert preventive effects against oxidative stress and support the use of N. cinerea as an efficient alternative model to assess the efficacy of food molecules.


Asunto(s)
Biomarcadores/metabolismo , Cafeína/farmacología , Cucarachas/efectos de los fármacos , Cucarachas/metabolismo , Locomoción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Dieta/métodos , Suplementos Dietéticos , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Modelos Animales
11.
Breast Cancer Res Treat ; 166(2): 351-365, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28776284

RESUMEN

Breast cancer is the leading cause of cancer-related deaths in women worldwide. GLOBOCAN estimated about 1.7 million new cases of breast cancer diagnoses worldwide and about 522,000 deaths in 2012. The burden of breast cancer mortality lies in the developing low-income and middle-income countries, where about 70% of such deaths occur. The incidence of breast cancer is also rising in low-income and middle-income countries in Africa as trend towards urbanization, and adoption of Western lifestyles increases. In general, the triple-negative breast cancer (TNBC) subtype tends to be frequent in women of African ancestry. What are the factors contributing to this prevalence? Are there genetic predispositions to TNBC in African women? This review addresses these questions and provides an update on the incidence, survival, and mortality of breast cancer in Africans, with a focus on sub-Saharan Africans. We have also addressed factors that could account for ethical disparities in incidence and mortality. Further, we have highlighted challenges associated with access to essential drug and to healthcare treatment in some African countries and outlined alternative/herbal treatment methods that are increasingly implemented in Africa and other developing nations.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/terapia , Mortalidad , África/epidemiología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Femenino , Predisposición Genética a la Enfermedad , Medicina de Hierbas , Humanos , Mastectomía , Mutación , Prevalencia , Factores Socioeconómicos
12.
EXCLI J ; 16: 566-582, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28694758

RESUMEN

Lantana camara, the widely studied species, and L. montevidensis, the less studied species of the genus Lantana are both used in traditional medicine for the same purpose (anti-asthma, anti-ulcer, anti-tumor, etc). However, little is known about the toxicity of L. montevidensis and there is limited information on its chemical constituents. Here, we investigated for the first time the genotoxicity and cytotoxicity of the ethanolic (EtOH) and aqueous extracts from the leaves of Lantana montevidensis in human leukocytes, as well as their possible interaction with human erythrocyte membranes in vitro. The antioxidant activities of both extracts were also investigated in chemical and biological models. Treatment of leukocytes with EtOH or aqueous extracts (1-480 µg/mL) did not affect DNA damage index, but promoted cytotoxicity at higher concentrations (240-480 µg/mL). Both extracts did not modify the osmotic fragility of human erythrocytes. The extracts scavenged DPPH radical and prevented Fe2+-induced lipid peroxidation in rat's brain and liver homogenates, and this was likely not attributed to Fe (II) chelation. The HPLC analysis of the extracts showed different amounts of polyphenolic compounds (isoquercitrin, gallic acid, catechin, ellagic acid, apigenin, kaempferol, caffeic acid, rutin, quercitrin, quercetin, chlorogenic acid, luteolin) that may have contributed to these effects. These results supported information on the functional use of L. montevidensis in folk medicine.

13.
EXCLI J ; 16: 302-312, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507474

RESUMEN

Anacardium microcarpum Ducke (Anacardiaceae) is a native species of Brazil used in folk medicine for the treatment of several illnesses although its antioxidant activity has been reported in vitro, there is no evidence of this effect in an in vivo model. Here, we investigated the potential protective effect of hydroalcoholic extract (AMHE), methanol (AMMF) and acetate (AMAF) fraction of A. microcarpum against paraquat toxicity on survivorship, locomotor performance, antioxidant enzymes activity and reactive species using Drosophila melanogaster. Flies were exposed to the extract or fractions (1 and 10 mg/ml) in the presence or absence of paraquat (5 mM) in sucrose solution for 72 h. In addition, total phenolic content of extract and fractions was evaluated as well as ABTS radical scavenging capacity. Our results demonstrated that AMAF presented higher content of phenols and ABTS chelating potential. Treatment of flies with the extract or fractions did not alter the survivorship, locomotor ability, and acetylcholinesterase (AchE) activity per se. Paraquat caused 85 % mortality of flies and 30 % increase in reactive species generation, which were significantly attenuated by AMHE and AMMF. AAMF increased catalase activity (from 66.77 ± 6.64 to 223.94 ± 25.92 mU/mg of protein), while AMAF increased GST activity (from 477.76 ± 92 to 770.19 ± 147.92 mU/mg of protein) and catalase activity (from 66.77 ± 6.64 to 220.54 ± 26.63 mU/mg of protein). AMHE and AMMF were more effective in protecting against paraquat toxicity. Taken together, the data indicate the potential of this plant in acting as a protective and antioxidant agent in vivo.

14.
Microb Pathog ; 107: 280-286, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28385578

RESUMEN

The association of herbal products with standard antimicrobial drugs has recently gained more attention as a hope to overcome infectious diseases caused by multidrug-resistant microorganisms. Here, we investigated for the first time the antimicrobial (antifungal and antibacterial) activity of ethanolic and aqueous extracts of R. echinus against multiresistant strains of bacteria (E. coli, P. aeruginosa and S. aureus) and fungi (C. albicans, C. krusei and C. tropicalis), as well as potential to enhance the activity of antibiotics drugs. In addition, both extract were chemically characterized and their toxicity was assessed in Artemia salina. Our results demonstrate that aqueous extract of R. echinus caused a significant increase in the activity of antibiotics gentamicin and imipenem, while the ethanolic extract strongly enhanced the antibiotic activity of gentamicin, amikacin, imipenem and ciprofloxacin against P. aeruginosa. However, neither the ethanolic nor the aqueous extracts significantly affect the antibiotic activity of the drugs when tested against S. aureus. Phytochemical analysis of the extracts indicated ellagic acid, caffeic acid and chlorogenic acid as the major components which can be at least in part responsible for the enhanced activity of antibiotics. None of the extracts showed toxicity in A. salina even at the highest concentration tested (1000 µg/mL). All together, our results suggest that the leaf extract of R. echinus can be an effective source of modulating agents.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Extractos Vegetales/farmacología , Tracheophyta/química , Animales , Antibacterianos/química , Antifúngicos/química , Artemia/efectos de los fármacos , Bacterias/efectos de los fármacos , Candida/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Hojas de la Planta/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
15.
Curr Top Med Chem ; 17(12): 1336-1370, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28049396

RESUMEN

Reactive species are produced in biological system because of redox reactions. The imbalance in pro-oxidant and antioxidant homeostasis leads to the production of toxic reactive oxygen and nitrogen species like hydrogen peroxide, organic peroxides, hydroxyl radicals, superoxide anion and nitric oxide. Inactivation of metabolic enzymes, oxidation of biomolecules and cellular damage are some of the prominent characteristics of reactive species. Similarly, oxidative stress has been associated with more than one hundred (100) pathologies such as atherosclerosis, diabetes, cardiovascular diseases, pancreatic and liver diseases, joint disorders, cardiac fibrosis, acute respiratory distress syndrome, neurological diseases (amyotrophic lateral sclerosis, Huntington's disorder, Parkinson's disease and Alzheimer's disease), ageing and cancer etc. The toxicity of reactive species is balanced by the integrated antioxidant systems, which include enzymatic and non-enzymatic antioxidants. Antioxidant therapies or defenses protect the biological sites by removing or quenching the free radicals (prooxidants). Medicinal plants can not only protect the oxidative damage, but also play a vital role in health maintenance and prevention of chronic degenerative diseases. This review will provide a valuable discussion of one hundred (100) well known medicinal plants, which may add to the optimization of antioxidants rank. Besides, some of the antioxidant evaluation techniques or mechanisms via which medicinal plants act as antioxidants are also described.


Asunto(s)
Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Plantas Medicinales/química , Antioxidantes/química , Humanos , Especies de Nitrógeno Reactivo/antagonistas & inhibidores , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
16.
Biomed Pharmacother ; 84: 614-621, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27694006

RESUMEN

Eugenia uniflora is used in the Brazilian folk medicine to treat intestinal disorders and hypertension. However, scanty information exist on its potential toxicity to human, and little is known on its antioxidant activity in biological system. Hence, we investigated for the first time the potential toxic effects of ethanolic extract (EtOH) of E. uniflora (EEEU) in human leukocytes and erythrocytes, as well as its influence on membrane erythrocytes osmotic fragility. In addition, EEEU was chemically characterized and its antioxidant capacity was evaluated. We found that EEEU (1-480µg/mL) caused neither cytotoxicity nor DNA damage evaluated by Trypan blue and Comet assay, respectively. EEEU (1-480µg/mL) did not have any effect on membrane erythrocytes fragility. In addition, EEEU inhibited Fe2+-induced lipid peroxidation in rat brain and liver homogenates, and scavenged the DPPH radical. EEEU presented some polyphenolic compounds with high content such as quercetin, quercitrin, isoquercitrin, luteolin and ellagic acid, which may be at least in part responsible for its beneficial effects. Our results suggest that consumption of EEEU at relatively higher concentrations may not result in toxicity. However, further in vitro and in vivo studies should be conducted to ascertain its safety.


Asunto(s)
Antioxidantes/farmacología , Eritrocitos/efectos de los fármacos , Leucocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Solventes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/toxicidad , Compuestos de Bifenilo/química , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Eritrocitos/metabolismo , Etanol/química , Eugenia/química , Humanos , Leucocitos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Fragilidad Osmótica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Picratos/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Hojas de la Planta , Plantas Medicinales , Polifenoles/aislamiento & purificación , Polifenoles/farmacología , Medición de Riesgo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
17.
Molecules ; 21(6)2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27338314

RESUMEN

BACKGROUND: Rhaphiodon echinus is a weed plant used in the Brazilian folk medicinal for the treatment of infectious diseases. In this study, the essential oil of R. echinus leaf was investigated for its antimicrobial properties. METHODS: The chemical constituents of the essential oil were characterized by GC-MS. The antimicrobial properties were determined by studying by the microdilution method the effect of the oil alone, and in combination with antifungal or antibiotic drugs against the fungi Candida albicans, Candida krusei and Candida tropicalis and the microbes Escherichia coli, Staphylococcus aureus and Pseudomonas. In addition, the iron (II) chelation potential of the oil was determined. RESULTS: The results showed the presence of ß-caryophyllene and bicyclogermacrene in major compounds, and revealed a low antifungal and antibacterial activity of the essential oil, but a strong modulatory effect on antimicrobial drugs when associated with the oil. The essential oil showed iron (II) chelation activity. CONCLUSIONS: The GC-MS characterization revealed the presence of monoterpenes and sesquiterpenes in the essential oil and metal chelation potential, which may be responsible in part for the modulatory effect of the oil. These findings suggest that essential oil of R. echinus is a natural product capable of enhancing the antibacterial and antifungal activity of antimicrobial drugs.


Asunto(s)
Antiinfecciosos/farmacología , Antifúngicos/farmacología , Infecciones/tratamiento farmacológico , Lamiaceae/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Antiinfecciosos/química , Antifúngicos/química , Brasil , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Humanos , Infecciones/microbiología , Monoterpenos/química , Aceites Volátiles/química , Hojas de la Planta/química , Aceites de Plantas/química , Sesquiterpenos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
18.
Pharm Biol ; 54(9): 1664-70, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26864563

RESUMEN

Context Melissa officinalis subsp. inodora Bornm. (Lamiaceae) has been used since ancient times in folk medicine against various diseases, but it has not been investigated against protozoa. Objective To evaluate the activities of M. officinalis against Leishmania braziliensis, Leishmania infantum and Trypanosoma cruzi as well as its cytotoxicity in fibroblast cell line. Materials and methods The fresh leaves were chopped into 1 cm(2) pieces, washed and macerated with 99.9% of ethanol for 72 h at room temperature. Antiparasitic activity of M. officinalis was accessed by direct counting of cells after serial dilution, while the cytotoxicity of M. officinalis was evaluated in fibroblast cell line (NCTC929) by measuring the reduction of resazurin. The test duration was 24 h. High-performance liquid chromatography (HPLC) was used to characterise the extract. Results The extract at concentrations of 250 and 125 µg/mL inhibited 80.39 and 54.27% of promastigote (LC50 value = 105.78 µg/mL) form of L. infantum, 80.59 and 68.61% of L. brasiliensis (LC50 value = 110.69 µg/mL) and against epimastigote (LC50 value = 245.23 µg/mL) forms of T. cruzi with an inhibition of 54.45 and 22.26%, respectively, was observed. The maximum toxicity was noted at 500 µg/mL with 95.41% (LC50 value = 141.01 µg/mL). The HPLC analysis identified caffeic acid and rutin as the major compounds. Discussion The inhibition of the parasites is considered clinically relevant (< 500 µg/mL). Rutin and caffeic acids may be responsible for the antiprotozoal effect of the extract. Conclusion The ethanol extract of M. officinalis can be considered a potential alternative source of natural products with antileishmania and antitrypanosoma activities.


Asunto(s)
Antiprotozoarios/farmacología , Cromatografía Líquida de Alta Presión , Kinetoplastida/efectos de los fármacos , Melissa , Fenoles/farmacología , Extractos Vegetales/farmacología , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Kinetoplastida/crecimiento & desarrollo , Leishmania braziliensis/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Dosificación Letal Mediana , Melissa/química , Pruebas de Sensibilidad Parasitaria , Fenoles/aislamiento & purificación , Fenoles/toxicidad , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Hojas de la Planta , Plantas Medicinales , Espectrofotometría , Trypanosoma cruzi/efectos de los fármacos
19.
Molecules ; 21(1): E2, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26729080

RESUMEN

Raphiodon echinus (R. echinus) is used in Brazilian folk medicine for the treatment of inflammation, coughs, and infectious diseases. However, no information is available on the potential antioxidant, cytotoxicity and genotoxicity of this plant. In this study, the polyphenolic constituents, antioxidant capacity and potential toxic effects of aqueous and ethanolic extracts of R. echinus on human erythrocytes and leukocytes were investigated for the first time. R. echinus extracts showed the presence of Gallic, chlorogenic, caffeic and ellagic acids, rutin, quercitrin and quercetin. Aqueous and ethanolic extracts of R. echinus exhibited antioxidant activity in DPPH radical scavenging with IC50 = 111.9 µg/mL (EtOH extract) and IC50 = 227.9 µg/mL (aqueous extract). The extracts inhibited Fe(2+) (10 µM) induced thiobarbituric acid reactive substances (TBARS) formation in rat brain and liver homogenates. The extracts (30-480 µg/mL) did not induce genotoxicity, cytotoxicity or osmotic fragility in human blood cells. The findings of this present study therefore suggest that the therapeutic effect of R. echinus may be, in part, related to its antioxidant potential. Nevertheless, further in vitro and in vivo studies are required to ascertain the safety margin of its use in folk medicine.


Asunto(s)
Antioxidantes/farmacología , ADN/efectos de los fármacos , Lamiaceae/química , Fragilidad Osmótica/efectos de los fármacos , Polifenoles/química , Animales , Antioxidantes/química , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , ADN/sangre , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Polifenoles/farmacología , Ratas
20.
Artículo en Inglés | MEDLINE | ID: mdl-25435894

RESUMEN

Duguetia furfuracea is frequently used as a medicinal plant in Brazil. However, studies have evidenced its cytotoxic, bactericide, and antitumor activities. In the present study we aimed to evaluate the potential toxicity of hydroalcoholic leaves extracts of D. furfuracea (HEDF) in a Drosophila melanogaster model. Toxicity was assessed as changes in locomotor performance, mitochondrial activity, oxidative stress, MAPKs phosphorylation, and apoptosis induction after exposure to HEDF concentrations (1-50 mg/mL) for 7 days. The phytoconstituents of the plant were screened for the presence of alkaloids, tannins, xanthones, chalcones, flavonoids, aurones, and phenolic acids. Exposure of adult flies to HEDF caused mitochondrial dysfunction, overproduction of ROS, and alterations in the activity of detoxifying enzymes GST, SOD and CAT. Induction of ERK phosphorylation and PARP cleavage was also observed, indicating occurrence of HEDF-induced cell stress and apoptotic cell death. In parallel, alterations in cholinesterase activity and impairments in negative geotaxis behavior were observed. Our study draws attention to the indiscriminate use of this plant by population and suggests oxidative stress as a major mechanism underlying its toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA