Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523146

RESUMEN

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Niño , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Analíticos de Alto Rendimiento/métodos
2.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33994371

RESUMEN

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Asunto(s)
Carbazoles/administración & dosificación , Carbazoles/farmacología , Cromatina/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/farmacología , Neuroblastoma/tratamiento farmacológico , Panobinostat/administración & dosificación , Panobinostat/farmacología , Animales , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Ratones , Células Tumorales Cultivadas
3.
J Cell Sci ; 128(17): 3223-38, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26183179

RESUMEN

Tumor protein D52 (TPD52) is amplified and/or overexpressed in cancers of diverse cellular origins. Altered cellular metabolism (including lipogenesis) is a hallmark of cancer development, and protein-protein associations between TPD52 and known regulators of lipid storage, and differential TPD52 expression in obese versus non-obese adipose tissue, suggest that TPD52 might regulate cellular lipid metabolism. We found increased lipid droplet numbers in BALB/c 3T3 cell lines stably expressing TPD52, compared with control and TPD52L1-expressing cell lines. TPD52-expressing 3T3 cells showed increased fatty acid storage in triglyceride (from both de novo synthesis and uptake) and formed greater numbers of lipid droplets upon oleic acid supplementation than control cells. TPD52 colocalised with Golgi, but not endoplasmic reticulum (ER), markers and also showed partial colocalisation with lipid droplets coated with ADRP (also known as PLIN2), with a proportion of TPD52 being detected in the lipid droplet fraction. Direct interactions between ADRP and TPD52, but not TPD52L1, were demonstrated using the yeast two-hybrid system, with ADRP-TPD52 interactions confirmed using GST pulldown assays. Our findings uncover a new isoform-specific role for TPD52 in promoting intracellular lipid storage, which might be relevant to TPD52 overexpression in cancer.


Asunto(s)
Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Neoplasias/biosíntesis , Triglicéridos/metabolismo , Animales , Células 3T3 BALB , Línea Celular Tumoral , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Ácidos Grasos/genética , Femenino , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Neoplasias/genética , Perilipina-2 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Triglicéridos/genética
4.
PLoS One ; 8(2): e55949, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23409094

RESUMEN

Controlling intestinal lipid absorption is an important strategy for maintaining lipid homeostasis. Accumulation of lipids in the liver is a major risk factor for metabolic syndrome and nonalcoholic fatty liver disease. It is well-known that sphingomyelin (SM) can inhibit intestinal cholesterol absorption. It is, however, unclear if dietary SM also lowers liver lipid levels. In the present study (i) the effect of pure dietary egg SM on hepatic lipid metabolism and intestinal cholesterol absorption was measured with [(14)C]cholesterol and [(3)H]sitostanol in male C57BL/6 mice fed a high-fat (HF) diet with or without 0.6% wt/wt SM for 18 days; and (ii) hepatic lipid levels and gene expression were determined in mice given a HF diet with or without egg SM (0.3, 0.6 or 1.2% wt/wt) for 4 weeks. Mice supplemented with SM (0.6% wt/wt) had significantly increased fecal lipid and cholesterol output and reduced hepatic [(14)C]cholesterol levels after 18 days. Relative to HF-fed mice, SM-supplemented HF-fed mice had significantly lower intestinal cholesterol absorption (-30%). Liver weight was significantly lower in the 1.2% wt/wt SM-supplemented mice (-18%). Total liver lipid (mg/organ) was significantly reduced in the SM-supplemented mice (-33% and -40% in 0.6% wt/wt and 1.2% wt/wt SM, respectively), as were triglyceride and cholesterol levels. The reduction in liver triglycerides was due to inactivation of the LXR-SREBP-1c pathway. In conclusion, dietary egg SM has pronounced hepatic lipid-lowering properties in mice maintained on an obesogenic diet.


Asunto(s)
Colesterol/metabolismo , Suplementos Dietéticos , Absorción Intestinal/efectos de los fármacos , Metabolismo de los Lípidos , Hígado/efectos de los fármacos , Hígado/metabolismo , Esfingomielinas/farmacología , Animales , Peso Corporal , Análisis por Conglomerados , Dieta Alta en Grasa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Hígado/patología , Masculino , Ratones , Tamaño de los Órganos
5.
Atherosclerosis ; 213(1): 142-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20832797

RESUMEN

The ability of the fatty acid composition of dietary phosphatidylcholine (PC) to affect hepatic lipid levels was investigated in C57BL/6 mice (n=8-10 per group) by feeding: (1) a high-fat semi-purified diet (HF), (2) HF diet supplemented with 1.25 wt% soy PC (SPC), (3) HF with 1.25 wt% hydrogenated soy PC (SPCH), (4) HF with 1.25 wt% egg PC (EPC), and (5) HF with 1.25 wt% hydrogenated egg PC (EPCH). The polyunsaturated fatty acid content (C18:2+C18:3+C20:4) of soy, egg and hydrogenated PC was 70%, 20% and 0%, respectively. Total liver lipid was significantly lower in SPCH and EPCH vs. HF (8.7 ± 0.1 and 8.5 ± 0.5 vs. 11.8 ± 0.6g/100, P<0.05), but not in SPC or EPC. SPCH and EPCH had significantly lower levels of hepatic cholesterol (-52% and -53% vs. HF, respectively). Bioactive lipids (i.e., sphingomyelin and ceramide) were also lower in the liver of SPCH and EPCH rather than in SPC or EPC. Hepatic expression of genes controlling fatty acid synthesis and catabolism were not significantly affected by dietary PC. However, hepatic expression of HMGCR, LDLR and SREBP2 was higher and that of ABCA1, ABCG5 and ABCG8 was reduced in SPCH and EPCH vs. HF. These results demonstrate that hydrogenated PC supplementation reduces hepatic lipid levels in mice fed a high-fat diet supporting the concept that the ability of dietary PC to lower hepatic lipid levels is not due to its content of polyunsaturated fatty acids.


Asunto(s)
Grasas de la Dieta/metabolismo , Lípidos/química , Fosfatidilcolinas/metabolismo , Alimentación Animal , Animales , Colesterol/química , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Fosfatidilcolinas/química , Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray , Esfingomielinas/metabolismo
6.
Atheroscler Suppl ; 11(1): 45-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20439167

RESUMEN

A number of different food components are known to reduce plasma and LDL-cholesterol levels by affecting intestinal cholesterol absorption. They include: soluble fibers, phytosterols, saponins, phospholipids, soy protein and stearic acid. These compounds inhibit cholesterol absorption by affecting cholesterol solubilization in the intestinal lumen, interfering with diffusion of luminal cholesterol to the gut epithelium and/or inhibiting molecular mechanisms responsible for cholesterol uptake by the enterocyte. Cholesterol content of intestinal chylomicrons is subsequently reduced, less cholesterol is transported to the liver within chylomicron remnants, hepatic LDL-receptor activity is increased and plasma levels of LDL-cholesterol are decreased. Reduced hepatic VLDL production and less conversion of VLDL to LDL also contribute to lower LDL levels. Certain food components may also affect intestinal bile acid metabolism. Further investigation of the way in which these functional ingredients affect intestinal lipid metabolism will facilitate their use and application as cardiovascular nutraceuticals.


Asunto(s)
Colesterol en la Dieta/metabolismo , Suplementos Dietéticos , Hipolipemiantes/farmacología , Absorción Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Animales , Fibras de la Dieta/farmacología , Humanos , Mucosa Intestinal/metabolismo , Fosfolípidos/farmacología , Fitosteroles/farmacología , Saponinas/farmacología , Proteínas de Soja/farmacología , Ácidos Esteáricos/farmacología
7.
Nutrients ; 2(2): 116-27, 2010 02.
Artículo en Inglés | MEDLINE | ID: mdl-22254012

RESUMEN

Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the ability of PLs to inhibit cholesterol absorption is of therapeutic benefit.


Asunto(s)
Colesterol en la Dieta/metabolismo , Absorción Intestinal/efectos de los fármacos , Fosfolípidos/farmacología , Dieta , Humanos , Lecitinas/farmacología , Tensoactivos/farmacología
8.
J Agric Food Chem ; 57(19): 9339-45, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19761211

RESUMEN

Krill oil (KO) is rich in n-3 fatty acids that are present in phospholipids rather than in triglycerides. In the present study, we investigated the effects of dietary KO on cardiometabolic risk factors in male C57BL/6 mice fed a high-fat diet. Mice (n = 6-10 per group) were fed for 8 weeks either: (1) a nonpurified chow diet (N); (2) a high-fat semipurified diet containing 21 wt % buttermilk + 0.15 wt % cholesterol (HF); (3) HF supplemented with 1.25 wt % KO (HFKO1.25); (4) HF with 2.5 wt % KO (HFKO2.5); or (5) HF with 5 wt % KO (HFKO5.0). Dietary KO supplementation caused a significant reduction in liver wt (i.e., hepatomegaly) and total liver fat (i.e., hepatic steatosis), due to a dose-dependent reduction in hepatic triglyceride (mean +/- SEM: 35 +/- 6, 47 +/- 4, and 51 +/- 5% for HFKO1.25, -2.5, and -5.0 vs HF, respectively, P < 0.001) and cholesterol (55 +/- 5, 66 +/- 3, and 71 +/- 3%, P < 0.001). Serum cholesterol levels were reduced by 20 +/- 3, 29 +/- 4, and 29 +/- 5%, and blood glucose was reduced by 36 +/- 5, 34 +/- 6, and 42 +/- 6%, respectively. Serum adiponectin was increased in KO-fed animals (HF vs HFKO5.0: 5.0 +/- 0.2 vs 7.5 +/- 0.6 microg/mL, P < 0.01). These results demonstrate that dietary KO is effective in improving metabolic parameters in mice fed a high-fat diet, suggesting that KO may be of therapeutic value in patients with the metabolic syndrome and/or nonalcoholic fatty liver disease.


Asunto(s)
Glucemia/análisis , Grasas Insaturadas en la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Euphausiacea/química , Hígado Graso/prevención & control , Hipercolesterolemia/prevención & control , Adiponectina/sangre , Animales , Colesterol/sangre , Ácidos Grasos Omega-3/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA