Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biomech ; 119: 110330, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33631662

RESUMEN

Advances in microphysiological systems have prompted the need for long-term cell culture under physiological flow conditions. Conventional laboratory pumps typically lack the ability to deliver cell culture media at the low flow rates required to meet the physiological ranges of fluid flow, and are often pulsatile or require flow reversal. Here, a microfluidic-based pump is presented, which allows for the controlled delivery of media for vascular microphysiological applications. The performance of the pump was characterized in a range of microfluidic systems, including straight channels of varying dimensions and self-assembled microvascular networks. A theoretical framework was developed based on lumped element analysis to predict the performance of the pump for different fluidic configurations and a finite element model of the included check-valves. The use of the pump for microvascular physiological studies demonstrated the utility of this system to recapitulate vascular fluid transport phenomena in microphysiological systems, which may find applications in disease models and drug screening.


Asunto(s)
Técnicas Analíticas Microfluídicas , Técnicas de Cultivo de Célula , Evaluación Preclínica de Medicamentos , Dispositivos Laboratorio en un Chip , Microfluídica
2.
Nat Protoc ; 15(2): 421-449, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932771

RESUMEN

This protocol describes the design, fabrication and use of a 3D physiological and pathophysiological motor unit model consisting of motor neurons coupled to skeletal muscles interacting via the neuromuscular junction (NMJ) within a microfluidic device. This model facilitates imaging and quantitative functional assessment. The 'NMJ chip' enables real-time, live imaging of axonal outgrowth, NMJ formation and muscle maturation, as well as synchronization of motor neuron activity and muscle contraction under optogenetic control for the study of normal physiological events. The proposed protocol takes ~2-3 months to be implemented. Pathological behaviors associated with various neuromuscular diseases, such as regression of motor neuron axons, motor neuron death, and muscle degradation and atrophy can also be recapitulated in this system. Disease models can be created by the use of patient-derived induced pluripotent stem cells to generate both the motor neurons and skeletal muscle cells used. This is demonstrated by the use of cells from a patient with sporadic amyotrophic lateral sclerosis but can be applied more generally to models of neuromuscular disease, such as spinal muscular atrophy, NMJ disorder and muscular dystrophy. Models such as this hold considerable potential for applications in precision medicine, drug screening and disease risk assessment.


Asunto(s)
Evaluación Preclínica de Medicamentos/instrumentación , Procedimientos Analíticos en Microchip/métodos , Enfermedades Neuromusculares/tratamiento farmacológico , Medicina de Precisión/instrumentación , Humanos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Neuromusculares/patología , Enfermedades Neuromusculares/fisiopatología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Medición de Riesgo
3.
Curr Opin Biotechnol ; 52: 116-123, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29656237

RESUMEN

Vascularization of micro-tissues in vitro has enabled formation of tissues larger than those limited by diffusion with appropriate nutrient/gas exchange as well as waste elimination. Furthermore, angiocrine signaling from the vasculature may be essential in mimicking organ-level functions in these micro-tissues. In drug screening applications, the presence of an appropriate blood-organ barrier in the form of a vasculature and its supporting cells (pericytes, appropriate stromal cells) may be essential to reproducing organ-scale drug delivery pharmacokinetics. Cutting-edge techniques including 3D bioprinting and in vitro angiogenesis and vasculogenesis could be applied to vascularize a range of tissues and organoids. Herein, we describe the latest developments in vascularization and prevascularization of micro-tissues and provide an outlook on potential future strategies.


Asunto(s)
Evaluación Preclínica de Medicamentos , Microfluídica/métodos , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Humanos , Neovascularización Fisiológica , Especificidad de Órganos
4.
Sci Rep ; 8(1): 5168, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581463

RESUMEN

Neurovascular coupling plays a key role in the pathogenesis of neurodegenerative disorders including motor neuron disease (MND). In vitro models provide an opportunity to understand the pathogenesis of MND, and offer the potential for drug screening. Here, we describe a new 3D microvascular and neuronal network model in a microfluidic platform to investigate interactions between these two systems. Both 3D networks were established by co-culturing human embryonic stem (ES)-derived MN spheroids and endothelial cells (ECs) in microfluidic devices. Co-culture with ECs improves neurite elongation and neuronal connectivity as measured by Ca2+ oscillation. This improvement was regulated not only by paracrine signals such as brain-derived neurotrophic factor secreted by ECs but also through direct cell-cell interactions via the delta-notch pathway, promoting neuron differentiation and neuroprotection. Bi-directional signaling was observed in that the neural networks also affected vascular network formation under perfusion culture. This in vitro model could enable investigations of neuro-vascular coupling, essential to understanding the pathogenesis of neurodegenerative diseases including MNDs such as amyotrophic lateral sclerosis.


Asunto(s)
Comunicación Celular/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Dispositivos Laboratorio en un Chip , Microfluídica/métodos , Neuronas Motoras/metabolismo , Análisis de Varianza , Animales , Señalización del Calcio , Permeabilidad Capilar , Células Cultivadas , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/métodos , Células Madre Embrionarias/fisiología , Humanos , Enfermedad de la Neurona Motora/metabolismo , Red Nerviosa , Neurogénesis/fisiología , Comunicación Paracrina , Esferoides Celulares/metabolismo , Sinapsis/metabolismo , Ingeniería de Tejidos/métodos
5.
Sci Rep ; 6: 26584, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27215466

RESUMEN

The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.


Asunto(s)
Terapia por Estimulación Eléctrica/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Neoplasias/terapia , Células A549 , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Células Endoteliales/citología , Diseño de Equipo , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias/metabolismo
6.
Integr Biol (Camb) ; 5(2): 381-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23172153

RESUMEN

Epithelial-mesenchymal transition (EMT) plays a critical role in the early stages of dissemination of carcinoma leading to metastatic tumors, which are responsible for over 90% of all cancer-related deaths. Current therapeutic regimens, however, have been ineffective in the cure of metastatic cancer, thus an urgent need exists to revisit existing protocols and to improve the efficacy of newly developed therapeutics. Strategies based on preventing EMT could potentially contribute to improving the outcome of advanced stage cancers. To achieve this goal new assays are needed to identify targeted drugs capable of interfering with EMT or to revert the mesenchymal-like phenotype of carcinoma to an epithelial-like state. Current assays are limited to examining the dispersion of carcinoma cells in isolation in conventional 2-dimensional (2D) microwell systems, an approach that fails to account for the 3-dimensional (3D) environment of the tumor or the essential interactions that occur with other nearby cell types in the tumor microenvironment. Here we present a microfluidic system that integrates tumor cell spheroids in a 3D hydrogel scaffold, in close co-culture with an endothelial monolayer. Drug candidates inhibiting receptor activation or signal transduction pathways implicated in EMT have been tested using dispersion of A549 lung adenocarcinoma cell spheroids as a metric of effectiveness. We demonstrate significant differences in response to drugs between 2D and 3D, and between monoculture and co-culture.


Asunto(s)
Antineoplásicos/administración & dosificación , Evaluación Preclínica de Medicamentos/instrumentación , Células Endoteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Pulmonares/fisiopatología , Técnicas Analíticas Microfluídicas/instrumentación , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/química , Comunicación Celular/efectos de los fármacos , Línea Celular Tumoral , Descubrimiento de Drogas/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico
7.
Biomed Microdevices ; 13(2): 325-33, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21113663

RESUMEN

Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfluidic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Calor , Técnicas Analíticas Microfluídicas/instrumentación , Microtecnología/métodos , Técnicas de Cultivo de Célula/economía , Supervivencia Celular/efectos de los fármacos , Cicloparafinas/química , Evaluación Preclínica de Medicamentos , Humanos , Técnicas Analíticas Microfluídicas/economía , Polímeros/química , Polímeros/farmacología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA