Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(43): 21758-21768, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591240

RESUMEN

Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for "effector required for nodulation-A." Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.


Asunto(s)
Bradyrhizobium/metabolismo , Fabaceae/microbiología , Organogénesis de las Plantas/fisiología , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Bradyrhizobium/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo , Organogénesis de las Plantas/genética , Raíces de Plantas/metabolismo , Pseudomonas fluorescens/genética , Simbiosis/fisiología , Sistemas de Secreción Tipo III/metabolismo
2.
Mitochondrion ; 46: 179-186, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30006008

RESUMEN

The structures of plant mitochondrial genomes are more complex than those of animals. One of the reasons for this is that plant mitochondrial genomes typically have many long and short repeated sequences and intra- and intermolecular recombination may create various DNA molecules in this organelle. Recombination may sometimes create a novel gene that causes cytoplasmic male sterility (CMS). The onion has several cytoplasm types, with some causing CMS while others do not. The complete mitochondrial genome sequence of the onion was reported for an inbred line with CMS-S cytoplasm; however, the number of differences between onion strains remains unclear, and studies on purified mitochondrial DNA (mtDNA) have not yet been performed. Furthermore, analyses of transcripts in the mitochondrial genome have not been conducted. In the present study, we examined the mitochondrial genome of the onion variety "Momiji-3" (Allium cepa L.) possessing CMS-S-type cytoplasm using next-generation sequencing (NGS). The "Momiji-3" mitochondrial genome mainly exists as three circles as a result of recombination through repeated sequences and we herein succeeded for the first time in visualizing its structure using pulsed field gel electrophoresis (PFGE). The ability to clarify the structure of the mitochondrial genome is rare in plant mitochondria; therefore, "Momiji-3" represents a good example for elucidating complex plant mitochondrial genomes. We also mapped transcript data to the mitochondrial genome in order to identify the RNA-editing positions in all gene-coding regions and estimate the expression levels of genes. We identified 635 editing positions in gene-coding regions. Start and stop codons were created by RNA editing in six genes (nad1, nad4L, atp6, atp9, ccmFC, and orf725). The transcript amounts of novel open reading frames (ORFs) were all markedly lower than those of functional genes. These results suggest that a new functional gene was not present in the mitochondrial genome of "Momiji-3", and that the candidate gene for CMS is orf725, as previously reported.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Mitocondrial , Cebollas/genética , ADN Circular/genética , ADN Mitocondrial/genética , Electroforesis en Gel de Campo Pulsado , Edición de ARN , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA