Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(15): 8817-8822, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38578981

RESUMEN

Radix Puerariae is a traditional Chinese medicinal material with a rich history of use in East and Southeast Asia. Puerarin, a unique component of the Pueraria genus, serves as a quality control marker for herbal medicines like Pueraria lobata and Pueraria thomsonii in China, displaying diverse pharmacological properties. This study developed puerarin colloidal gold immunoassay dipsticks utilizing an anti-puerarin monoclonal antibody, resulting in a fast and sensitive detection method with a limit of 500-1000 ng·mL-1. Evaluation using tap water-extracted P. lobata and P. thomsonii samples showed consistent results compared to LC-MS analysis. Cross-reactivity assessments of puerarin analogs revealed minimal interference, affirming the dipstick's reliability for distinguishing between the two species.


Asunto(s)
Isoflavonas , Plantas Medicinales , Pueraria , Reproducibilidad de los Resultados , Isoflavonas/análisis , Control de Calidad
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1206-1216, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621967

RESUMEN

Soil microbiome is a key evaluation index of soil health. Previous studies have shown that organic fertilizer from traditional Chinese medicine(TCM)residues can improve the yield and quality of cultivated traditional Chinese medicinal materials. However, there are few reports on the effects of organic fertilizer from TCM residues on soil microbiome. Therefore, on the basis of evaluating the effects of organic fertilizer from TCM residues on the yield and quality of cultivated Salvia miltiorrhiza, the metagenomic sequencing technique was used to study the effects of organic fertilizer from TCM residues on rhizosphere microbiome community and function of cultivated S. miltiorrhiza. The results showed that:(1) the application of organic fertilizer from TCM residues promoted the growth of S. miltiorrhiza and the accumulation of active components, and the above-ground and underground dry weight and fresh weight of S. miltiorrhiza increased by 371.4%, 288.3%, 313.4%, and 151.9%. The increases of rosmarinic acid and salvianolic acid B were 887.0% and 183.0%.(2)The application of organic fertilizer from TCM residues significantly changed the rhizosphere bacterial and fungal community structures, and the microbial community composition was significantly different.(3)The relative abundance of soil-beneficial bacteria, such as Nitrosospira multiformis, Bacillus subtilis, Lysobacter enzymogenes, and Trichoderma was significantly increased by the application of organic fertilizer from TCM residues.(4)KEGG function prediction analysis showed that metabolism-related microorganisms were more easily enriched in the soil environment after organic fertilizer application. The abundance of functional genes related to nitrification and denitrification could also be increased after the application of organic fertilizer from TCM residues. The results of this study provide guidance for the future application of organic fertilizer from TCM residues in the cultivation of traditio-nal Chinese medicinal materials and enrich the content of green cultivation technology of traditional Chinese medicinal materials.


Asunto(s)
Micobioma , Salvia miltiorrhiza , Suelo/química , Salvia miltiorrhiza/química , Fertilizantes , Medicina Tradicional China , Bacterias/genética , Microbiología del Suelo
3.
Food Res Int ; 175: 113681, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129026

RESUMEN

The accurate and rapid authentication techniques and strategies for highly-similar foods are still lacking. Herein, a novel sequential online extraction electrospray ionization mass spectrometry (S-oEESI-MS) was developed to achieve spatio-temporally resolved ionization and comprehensive characterization of complex foods with multi-components (high, medium, and low polarity substances). Meanwhile, a characteristic marker screening method and an integrated research strategy based on MS fingerprinting, characteristic marker and chemometrics modeling were established, which are especially suitable for the accurate and rapid authentication of highly-similar foods that are difficult to be authenticated by traditional techniques (e.g., LC-MS). Thirty-two batches of highly-similar Atractylodis macrocephalae rhizome from four different origins were used as model samples. As a result, S-oEESI-MS enabled a more comprehensive MS characterization of substance profiles in complex plant samples in 1.0 min. Further, 22 characteristic markers of Atractylodis macrocephalae were ingeniously screened out and combined with multivariate statistical analysis model, the accurate authentication of highly-similar Atractylodis macrocephalae was realized. This study presents a comprehensive strategy for accurate authentication and origin analysis of highly-similar foods, which has potentially significant applications for ensuring food quality and safety.


Asunto(s)
Atractylodes , Medicamentos Herbarios Chinos , Espectrometría de Masa por Ionización de Electrospray , Atractylodes/química , Medicamentos Herbarios Chinos/química , Análisis Multivariante , Cromatografía Líquida con Espectrometría de Masas
4.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4634-4646, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802802

RESUMEN

Dead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-ß-D-glucuronide, oroxylin A-7-O-ß-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Scutellaria baicalensis/genética , Scutellaria baicalensis/química , Glucurónidos , Multiómica , Flavonoides/química
5.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4950-4958, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802836

RESUMEN

The quality of moxa is a key factor affecting the efficacy of moxibustion. Traditional moxa grades are evaluated by the leaf-to-moxa ratio, but there is a lack of support from scientific data. Scanning electron microscopy(SEM), Image Pro Plus, Van Soest method, and stimultaneous thermal analysis(TGA/DSC) were used to characterize the scientific implication of the combustion differences between moxa with different leaf-to-moxa ratios(processed by crusher). The results showed that the median lengths from non-secretory trichomes(NSTs) of natural NSTs and moxa with leaf-to-moxa ratios of 3∶1, 5∶1, 10∶1, and 15∶1 were 542.46, 303.24, 291.18, 220.69, and 170.61 µm, respectively. The cellulose content of moxa increased significantly(P<0.05) with the increase in leaf-to-moxa ratio and the combustion parameters(T_i, t_i, D_i, C,-R_p,-R_v, S, D_b, and J_(total)) all showed an increasing trend. The correlation results showed that the burning properties of moxa(T_i,-R_v, t_i, and J_2) were significantly and positively correlated with cellulose content. NSTs with a length of 1-200 µm were significantly and positively correlated with J_2. NSTs with a length of 200-600 µm were significantly and positively correlated with J_1, T_(peak2), T_(peak1), and-R_v, and negatively correlated with J_(total), T_b, and t_b. As the leaf-to-moxa ratio increases, the NSTs in the moxa become shorter and the cellulose content increases, which is more conducive to ignition performance, heat release, and a milder, longer-lasting burn. The "NSTs-cellulose-TGA/DSC" quantitative evaluation method scientifically reveals the scientific connotation of the combustion of moxa with different leaf-to-moxa ratios and provides a scientific basis for the establishment of quality evaluation methods for moxa with different leaf-to-moxa ratios.


Asunto(s)
Moxibustión , Tricomas , Calor , Hojas de la Planta
6.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3693-3700, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475060

RESUMEN

The quality of moxa is an important factor affecting moxibustion therapy, and traditionally, 3-year moxa is considered optimal, although scientific data are lacking. This study focused on 1-year and 3-year moxa from Artemisia stolonifera and A. argyi(leaf-to-moxa ratio of 10∶1) as research objects. Scanning electron microscopy(SEM), Van Soest method, and simultaneous thermal analysis were used to investigate the differences in the combustion heat quality of 1-year and 3-year moxa and their influencing factors. The results showed that the combustion of A. stolonifera moxa exhibited a balanced heat release pattern. The 3-year moxa released a concentrated heat of 9 998.84 mJ·mg~(-1)(accounting for 54% of the total heat release) in the temperature range of 140-302 ℃, with a heat production efficiency of 122 mW·mg~(-1). It further released 7 512.51 mJ·mg~(-1)(accounting for 41% of the total heat release) in the temperature range of 302-519 ℃. The combustion of A. argyi moxa showed a rapid heat release pattern. The 3-year moxa released a heat of 16 695.28 mJ·mg~(-1)(accounting for 70% of the total heat release) in the temperature range of 140-311 ℃, with an instantaneous power output of 218 mW·mg~(-1). It further released 5 996.95 mJ·mg~(-1)(accounting for 25% of the total heat release) in the temperature range of 311-483 ℃. Combustion parameters such as-R_p,-R_v, D_i, C, and D_b indicated that the combustion heat quality of 3-year moxa was superior to that of 1-year moxa. It exhibited greater combustion heat, heat production efficiency, flammability, mild and sustained burning, and higher instantaneous combustion efficiency. This study utilized scientific data to demonstrate that A. stolonifera could be used as excellent moxa, and the quality of 3-year moxa surpassed that of 1-year moxa. The research results provide a scientific basis for the in-depth development of A. stolonifera moxa and the improvement of moxa quality standards.


Asunto(s)
Artemisia , Moxibustión , Calor , Hojas de la Planta
7.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3701-3714, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475061

RESUMEN

This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.


Asunto(s)
Artemisia , Medicamentos Herbarios Chinos , Antioxidantes/farmacología , Antioxidantes/química , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Antiinflamatorios/farmacología , Antiinflamatorios/química , Medicamentos Herbarios Chinos/farmacología , Interleucina-6
8.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3826-3838, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37475074

RESUMEN

This study aimed to characterize and identify the non-volatile components in Pogostemonis Herba by using ultra-perfor-mance liquid chromatography-quadrupole-time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with UNIFI and an in-house library. The chemical components in 50% methanol extract of Pogostemonis Herba were detected by UPLC-Q-TOF-MS in both positive and negative MS~E continuum modes. Then, the MS data were processed in UNIFI combined with an in-house library to automatically characterize the metabolites. Based on the multiple adduct ions, exact mass, diagnostic fragment ions, and peak intensity of compounds and the fragmentation pathways and retention behaviors of reference substances, the structures identified by UNIFI were further verified and those of the unidentified compounds were tentatively elucidated. A total of 120 compound structures were identified or tentatively identified, including flavonoids, phenylpropanoids, phenolic acids, terpenes, fatty acids, alkaloids, and phenylethanoid glycosides. Sixteen of them were accurately identified by comparison with reference substances, and 53 compounds were reported the first time for Pogostemonis Herba. This study systematically characterized and identified the non-volatile compounds in Pogostemonis Herba for the first time. The findings provide a scientific basis for revealing the pharmacodynamic material basis, establishing a quality control system, and developing products of Pogostemonis Herba.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Glicósidos , Iones
9.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2919-2924, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381951

RESUMEN

Zearalenone(ZEN) is a toxic metabolite produced by Fusarium culmorum, F. graminearum, F. tricinctum, and other fungi, with estrogenic characteristics. Exposure to or ingestion of ZEN during pregnancy can cause reproductive dysfunction, miscarriage, stillbirth, and malformation, and seriously endanger human life and health. The detection methods for ZEN in the Chinese Pharmacopoeia(2020 edition) are liquid chromatography(LC) and liquid chromatography-mass spectrometry(LC-MS), and it is stipulated that ZEN should not exceed 500 µg in 1 000 g of Coicis Semen. Although these detection methods by instruments can achieve the qualitative and quantitative analysis of ZEN in Coicis Semen, their high detection cost and long periods hinder the rapid screening of a large number of samples in the field. In this study, the synthesized ZEN hapten was conjugated with bovine serum albumin(BSA) and ovalbumin(OVA) to obtain the complete ZEN antigen. By virtue of antibody preparation techniques, ZEN monoclonal antibody 4F6 was prepared, which showed 177.5%, 137.1%, and 109.7% cross-reactivity with ZEN structural analogs zearalanol, zearalenone, and α-zearalenol, respectively, and no cross-reactivity with other fungal toxins such as aflatoxin. Direct competitive enzyme-linked immunosorbent assay(dcELISA) based on ZEN monoclonal antibody 4F6 was developed for the determination of ZEN in Coicis Semen with an IC_(50) of 1.3 µg·L~(-1) and a detection range of 0.22-21.92 µg·L~(-1). The recoveries were 83.91%-105.3% and the RSD was 4.4%-8.0%. The established dcELISA method was used to determine the ZEN residuals in nine batches of Coicis Semen samples, and the results were validated by LC-MS. The correlation between the two detection methods was found to be 0.993 9, indicating that the established dcELISA could be used for the rapid qualitative and quantitative detection of ZEN residuals in Coicis Semen.


Asunto(s)
Coix , Micotoxinas , Zearalenona , Humanos , Femenino , Embarazo , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Monoclonales
10.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2020-2040, 2023 Apr.
Artículo en Chino | MEDLINE | ID: mdl-37282892

RESUMEN

Codonopsis Radix is a traditional tonic medicine commonly used in China, which has the effects of strengthening the spleen and tonifying the lung, as well as nourishing blood and engendering liquid. The chemical constituents of Codonopsis species are mainly polyacetylenes, alkaloids, phenylpropanoids, lignans, terpenoids and saponins, flavonoids, steroids, organic acids, saccharides, and so on. Modern pharmacological studies showed that Codonopsis Radix also has a variety of pharmacological effects such as enhancing body immunity, protecting gastrointestinal mucosa and resisting ulcers, promoting hematopoietic function, regulating blood sugar, and delaying aging. In this paper, the chemical constituents of Codonopsis species and the pharmacological effects of Codonopsis Radix were summarized, and on this basis, the quality markers of Codonopsis Radix were analyzed. It was predicted that lobetyolin, tangshenoside I, codonopyrrolidium A, and the oligosaccharides were the possible Q-markers of Codonopsis Radix. This paper will provide scientific references for the quality evaluation and profound research and the development of Codonopsis Radix.


Asunto(s)
Alcaloides , Codonopsis , Medicamentos Herbarios Chinos , Medicina Tradicional , Raíces de Plantas
11.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2160-2185, 2023 Apr.
Artículo en Chino | MEDLINE | ID: mdl-37282904

RESUMEN

Starting with the relationship between mulberry leaves and silkworm droppings as food and metabolites, this study systematically compared the chemical components, screened out differential components, and quantitatively analyzed the main differential components based on ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and UPLC-Q-TRAP-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Moreover, the in vitro enzymatic transformation of the representative differential components was studied. The results showed that(1) 95 components were identified from mulberry leaves and silkworm droppings, among which 27 components only exist in mulberry leaves and 8 components in silkworm droppings. The main differential components were flavonoid glycosides and chlorogenic acids.(2) Nineteen components with significant difference were quantitatively analyzed, and the components with significant differences and high content were neochlorogenic acid, chlorogenic acid, and rutin.(3) The crude protease in the mid-gut of silkworm significantly metabolized neochlorogenic acid and chlorogenic acid, which may be an important reason for the efficacy change in mulberry leaves and silkworm droppings. This study lays a scientific foundation for the development, utilization, and quality control of mulberry leaves and silkworm droppings. It provides references for clarifying the possible material basis and mechanism of the pungent-cool and dispersing nature of mulberry leaves transforming into the pungent-warm and dampness-resolving nature of silkworm droppings, and offers a new idea for the study of nature-effect transformation mechanism of traditional Chinese medicine.


Asunto(s)
Bombyx , Morus , Animales , Morus/química , Ácido Clorogénico/análisis , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Hojas de la Planta/química
12.
J Pharm Anal ; 13(3): 296-304, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37102106

RESUMEN

The rapid and accurate authentication of traditional Chinese medicines (TCMs) has always been a key scientific and technical problem in the field of pharmaceutical analysis. Herein, a novel heating online extraction electrospray ionization mass spectrometry (H-oEESI-MS) was developed for the rapid and direct analysis of extremely complex substances without the requirement for any sample pretreatment or pre-separation steps. The overall molecular profile and fragment structure features of various herbal medicines could be completely captured within 10-15 s, with minimal sample (<0.5 mg) and solvent consumption (<20 µL for one sample). Furthermore, a rapid differentiation and authentication strategy for TCMs based on H-oEESI-MS was proposed, including metabolic profile characterization, characteristic marker screening and identification, and multivariate statistical analysis model validation. In an analysis of 52 batches of seven types of Aconitum medicinal materials, 20 and 21 key compounds were screened out as the characteristic markers of raw and processed Aconitum herbal medicines, respectively, and the possible structures of all the characteristic markers were comprehensively identified based on Compound Discoverer databases. Finally, multivariate statistical analysis showed that all the different types of herbal medicines were well differentiated and identified (R2X > 0.87, R2Y > 0.91, and Q2 > 0.72), which further verified the feasibility and reliability of this comprehensive strategy for the rapid authentication of different TCMs based on H-oEESI-MS. In summary, this rapid authentication strategy realized the ultra-high-throughput, low-cost, and standardized detection of various complex TCMs for the first time, thereby demonstrating wide applicability and value for the development of quality standards for TCMs.

13.
Proc Natl Acad Sci U S A ; 120(18): e2301775120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094153

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.


Asunto(s)
COVID-19 , Humanos , Antivirales/farmacología , SARS-CoV-2 , Quercetina/farmacología , Antiinflamatorios/farmacología , Simulación del Acoplamiento Molecular
14.
Zhongguo Zhong Yao Za Zhi ; 48(3): 660-671, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872229

RESUMEN

Lilii Bulbus is a commonly used Chinese herbal medicine with both medicinal and edible values, while the market products usually has the problem of sulfur fumigation. Therefore, the quality and safety of Lilii Bulbus products deserve attention. In this study, ultra-high performance liquid chromatography-time of flight-tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was combined with principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) to analyze the differential components of Lilii Bulbus before and after sulfur fumigation. We identified ten markers generated after sulfur fumigation, summarized their mass fragmentation and transformation patterns, and verified the structures of phenylacrylic acid markers of sulfur fumigation. At the same time, the cytotoxicity of the aqueous extracts of Lilii Bulbus before and after sulfur fumigation was evaluated. The results showed that in the concentration range of 0-800 mg·L~(-1), the aqueous extract of Lilii Bulbus after sulfur fumigation had no significant effect on the viability of human liver LO2 cells, human renal proximal tubular HK-2 cells, and rat adrenal pheochromocytoma PC-12 cells. Moreover, the viability of the cells exposed to the aqueous extract of Lilii Bulbus before and after sulfur fumigation showed no significant difference. This study identified phenylacrylic acid and furostanol saponins as markers of sulfur-fumigated Lilii Bulbus for the first time, and made clear that proper sulfur fumigation of Lilii Bulbus would not produce cytotoxicity, providing a theoretical basis for the rapid identification and quality and safety control of sulfur-fumigated Lilii Bulbus.


Asunto(s)
Fumigación , Espectrometría de Masas en Tándem , Humanos , Animales , Ratas , Cromatografía Líquida de Alta Presión , Células Epiteliales , Azufre
15.
Zhongguo Zhong Yao Za Zhi ; 48(2): 349-355, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725224

RESUMEN

The study aimed to explore the effects of inoculation of Rhizophagus intraradices on the biomass, effective component content, and endogenous hormone content of Salvia miltiorrhiza through pot experiments. The number of leaves, plant height, dry weight of aboveground and underground parts, branch number, root number, root length, root diameter, and other biomass were mea-sured by weighing and counting methods. The content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, tanshinone Ⅱ_A, cryptotanshinone, and other effective components was determined by ultra-high performance liquid chromatography. The content of ABA and GA_3 was determined by triple quadrupole mass spectrometry. The correlations between biomass and effective components and between effective components and plant hormones ABA and GA_3 were analyzed. The results showed that R. intraradices significan-tly increased the aboveground dry weight, leaf number, and root number of S. miltiorrhiza by 0.24-0.65 times, respectively. The content of salvianolic acid B and rosmarinic acid in the aboveground part and the content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, and tanshinone Ⅱ_A in the underground part were significantly increased by 0.44-1.78 times, respectively. R. intraradices infection significantly increased the GA_3/ABA values of aboveground and underground parts by 3.82 and 76.47 times, respectively. The correlation analysis showed that caffeic acid, the effective component of the aboveground part, was significantly positively correlated with plant height, tanshinone Ⅱ_A, the effective component of the underground part, was significantly positively correlated with biomass root number, cryptotanshinone, and dry weight, while rosmarinic acid was significantly negatively correlated with dry weight. There were significant positive correlations between cryptotanshinone and ABA, tanshinone Ⅱ_A and ABA and GA_3, and caffeic acid and GA_3. In conclusion, R. intraradices can promote the accumulation of biomass and secondary metabolites of S. miltiorrhiza and regulate the balance between plant hormones ABA and GA_3, thereby promoting the growth of S. miltiorrhiza.


Asunto(s)
Salvia miltiorrhiza , Salvia miltiorrhiza/química , Reguladores del Crecimiento de las Plantas/análisis , Raíces de Plantas/química , Ácido Rosmarínico
16.
J Pharm Biomed Anal ; 223: 115118, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36332330

RESUMEN

Coronavirus disease (COVID-19) caused by SARS-COV-2 infection has been widely prevalent in many countries and has become a common challenge facing mankind. Traditional Chinese medicine (TCM) has played a prominent role in this pandemic, and especially TCM with the function of "heat-clearing and detoxifying" has shown an excellent role in anti-virus. Fufang Shuanghua oral liquid (FFSH) has been used to treat the corresponding symptoms of influenza such as fever, nasal congestion, runny nose, sore throat, and upper respiratory tract infections in clinic, which are typical symptoms of COVID-19. The content of chlorogenic acid, andrographolide and dehydrated andrographolide as the quality control components of FFSH is not less than 1.0 mg/mL, 60 µg/mL and 60 µg/mL respectively. In this study, UPLC-Q-TOF-MS/MS was employed to describe the chemical profile of FFSH. Virtual screening and fluorescence resonance energy transfer (FRET) were used to screen the effective components of FFSH acting on SARS-CoV-2 main protease (Mpro). As a result, 214 compounds in FFSH were identified or preliminarily characterized by UPLC-Q-TOF-MS/MS, and 61 active ingredients with potential inhibitory effects on Mpro were selected through receptor-based and ligand-based virtual screening. In particular, quercetin, forsythoside A, and linoleic acid showed a good inhibitory effect on Mpro in FRET evaluation with IC50 values of 26.15 µM, 22.26 µM and 47.09 µM respectively, and had a strong binding affinity with the receptor Mpro (6LU7) in molecular docking. CYS145 and HIS41 were the main amino acid residues affected by small molecules in the protein binding domain. In brief, we characterized, for the first time, 214 chemical components in FFSH, and three of them, including quercetin, forsythoside A and linoleic acid, were screened out to exert beneficial anti-COVID-19 effects through CYS145 and HIS41 sites, which may provide a new research strategy for TCM to develop new therapeutic drugs against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Quercetina/farmacología , Espectrometría de Masas en Tándem , Ácido Linoleico , Proteínas no Estructurales Virales , Inhibidores de Proteasas/farmacología
17.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6361-6370, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38211992

RESUMEN

Moutan Cortex(MC) residues produced after the extraction of MC can be re-extracted for active components and used to produce organic fertilizer and animal feed. However, they are currently disposed as domestic waste, which pollutes the environment. This study analyzed the chemical composition of the medicinal material, residues, and residue compost of MC by UPLC-UV-Q-TOF-MS. Furthermore, the nutrient composition of MC residues and the residue compost was analyzed. The results showed that:(1)MC residues had lower content of chemicals than the medicinal material, and content of paeonol, gallic acid, and galloylglucose in MC residues were about 1/3 of that in the medicinal material. The content of chemicals were further reduced after residue composting, and the quantitative compounds were all below the limits of detection.(2)Compared with MC residues, the residue compost showed the total nitrogen, total phosphorus, total potassium, and organic matter content increasing by 122.67%, 31.32%, 120.39%, and 32.06%, respectively. Therefore, we concluded that the MC residues can be used to re-extract active compounds such as paeonol, gallic acid, and galloylglucose. The MC residue compost is a high-quality organic fertilizer containing minimal content of chemicals and can be widely used in the cultivation of Chinese medicinal herbs.


Asunto(s)
Acetofenonas , Compostaje , Medicamentos Herbarios Chinos , Paeonia , Animales , Fertilizantes , Suelo/química , Taninos Hidrolizables , Nutrientes
18.
Front Plant Sci ; 13: 921815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774804

RESUMEN

Isatis indigotica is a popular herbal medicine with its noticeable antiviral properties, which are primarily due to its lignan glycosides such as lariciresinol-4-O-ß-D-glucoside and lariciresinol-4,4'-bis-O-ß-D-glucosides (also called clemastanin B). UDP-glucose-dependent glycosyltransferases are the key enzymes involved in the biosynthesis of these antiviral metabolites. In this study, we systematically characterized the UGT72 family gene IiUGT1 and two UGT71B family genes, IiUGT4 and IiUGT71B5a, with similar enzymatic functions. Kinetic analysis showed that IiUGT4 was more efficient than IiUGT1 or IiUGT71B5a for the glycosylation of lariciresinol. Further knock-down and overexpression of these IiUGTs in I. indigotica's hairy roots indicates that they play different roles in planta: IiUGT71B5a primarily participates in the biosynthesis of coniferin not pinoresinol diglucoside, and IiUGT1 primarily participates in the biosynthesis of pinoresinol diglucoside, while IiUGT4 is responsible for the glycosylation of lariciresinol and plays a dominant role in the biosynthesis of lariciresinol glycosides in I. indigotica. Analysis of the molecular docking and site-mutagenesis of IiUGT4 have found that key residues for its catalytic activity are H373, W376, E397, and that F151 could be associated with substrate preference. This study elucidates the biosynthetic route of anti-viral lignan glycosides in I. indigotica, and provides the foundation for the production of anti-viral lignan glycosides via synthetic biology under the heterologous model.

19.
J Sep Sci ; 45(19): 3663-3678, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35908283

RESUMEN

The stem bark of Magnolia officinalis is a traditional Chinese medicine for the treatment of abdominal distention and functional dyspepsia. The pharmacokinetics of three glycosides (magnoloside A, magnoloside B, and syringin) and two lignans (honokiol and magnolol) in both normal and functional dyspepsia rats were firstly investigated by ultra-performance liquid chromatography-triple quadrupole mass spectrometry method and the influences of the coexisting compounds on the pharmacokinetic parameters of honokiol and magnolol were also studied. It was found that all of the five target compounds were quickly absorbed and eliminated in both normal and functional dyspepsia rats, while, their residence time was significantly decreased in pathological states except magnoloside A. The coexisting compounds in the stem bark of M. officinalis significantly reduced absorption and increased elimination of honokiol in vivo. It's worth noticing that the volume of distribution of lignan was quite lower than that of a glycoside. Moreover, the metabolic profiling of magnoloside A, honokiol, and magnolol in vivo was analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method, from which three prototypes were identified and 35 metabolites were putatively characterized, and 18 unknown metabolites were reasonably characterized for the first time. The results indicated that sulfation and glucuronidation were the main metabolic pathways of honokiol and magnolol.


Asunto(s)
Dispepsia , Lignanos , Magnolia , Ratas , Animales , Magnolia/química , Espectrometría de Masas en Tándem , Corteza de la Planta/química , Cromatografía Líquida de Alta Presión/métodos , Compuestos de Bifenilo/química , Lignanos/análisis , Glicósidos/análisis , Cromatografía Liquida
20.
J Agric Food Chem ; 70(5): 1494-1506, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35089021

RESUMEN

Allelopathy is considered an environmentally friendly and resource-conserving approach to weed control because allelochemicals degrade easily and cause less pollution than traditional chemical herbicides. In this study, the allelopathic active constituents of Artemisia argyi were elucidated by activity-guided isolation and ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). First, a crude extract prepared in water was fractionated using macroporous resin D101 to obtain three fractions (Fr.A-C). Combined with the allelopathic activity assay on Setaria viridis and Portulaca oleracea, Fr.C was determined to be the most active fraction. We identified 14 compounds in the active fraction (Fr.C) using UPLC-QTOF-MS, including 13 phenolic compounds. Accordingly, phenolic components have been suggested as the main allelochemicals in A. argyi. Thereafter, Fr.C was further isolated by octadecylsilyl (ODS) chromatography to obtain eight subfractions (Fr.C-1-Fr.C-8). Finally, isochlorogenic acid A (ICGAA) was purified from Fr.C-3 by semipreparative liquid chromatography, which was detected in the growth environment of A. argyi. Furthermore, we evaluated the allelopathic effects of ICGAA on six weeds from different families and genera for the first time. The results showed that ICGAA is a novel allelochemical with broad herbicidal activity. In addition, we analyzed the inhibitory effect and molecular mechanism of ICGAA on the growth of S. viridis seedlings. Optical microscopy and transmission electron microscopy (TEM) revealed the degradation of membrane structures and organelles after ICGAA treatment. Transcriptome and real-time polymerase chain reaction (RT-qPCR) analysis showed that ICGAA inhibited the growth of weeds mainly by inhibiting the diterpenoid biosynthesis pathway (especially gibberellins, GAs). The decrease of gibberellin (GA) contents after ICGAA treatment also confirmed these results. In brief, this study provides new material sources and theoretical support for developing biological herbicides for agroecosystems.


Asunto(s)
Alelopatía , Artemisia , Ácido Clorogénico/análogos & derivados , Cromatografía Liquida , Espectrometría de Masas , Malezas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA