Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Vet Microbiol ; 242: 108604, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32122610

RESUMEN

Here, we examined the efficacy of are combinant subunit antigen-based oral vaccine for preventing porcine epidemic diarrhea virus (PEDV). First, we generated a soluble recombinant partial spike S1 protein (aP2) from PEDV in E. coli and then evaluated the utility of aP2 subunit vaccine-loaded hydroxypropyl methylcellulose phthalate microspheres (HPMCP) and RANKL-secreting L. lactis (LLRANKL) as a candidate oral vaccine in pregnant sows. Pregnant sows were vaccinated twice (with a 2 week interval between doses) at 4 weeks before farrowing. Titers of virus-specific IgA antibodies in colostrum, and neutralizing antibodies in serum, of sows vaccinated with HPMCP (aP2) plus LL RANKL increased significantly at 4 weeks post-first vaccination. Furthermore, the survival rate of newborn suckling piglets delivered by sows vaccinated with HPMCP (aP2) plus LL RANKL was similar to that of piglets delivered by sows vaccinated with a commercial killed porcine epidemic diarrhea virus (PED) vaccine. The South Korean government promotes a PED vaccine program (live-killed-killed) to increase the titers of IgA and IgG antibodies in pregnant sows and prevent PEDV. The oral vaccine strategy described herein, which is based on a safe and efficient recombinant subunit antigen, is an alternative PED vaccination strategy that could replace the traditional strategy, which relies on attenuated live oral vaccines or artificial infection with virulent PEDV.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Lactobacillus/inmunología , Metilcelulosa/análogos & derivados , Ligando RANK/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Administración Oral , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Calostro/inmunología , Infecciones por Coronavirus/prevención & control , Femenino , Metilcelulosa/administración & dosificación , Microesferas , Virus de la Diarrea Epidémica Porcina , Embarazo , Ligando RANK/administración & dosificación , Porcinos , Enfermedades de los Porcinos/virología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/administración & dosificación
2.
Curr Microbiol ; 72(3): 259-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26613617

RESUMEN

Although there have been many attempts to produce ω-3 fatty acid-rich eggs using alpha-linolenic acid (ALA) that is a popular fatty acid in the poultry feed industry, only limited knowledge about the effects of ALA-enriched diets on chicken fecal microbiota is currently available. Herein we examined the changes in the fecal microbiota composition, egg quality traits and fatty acid composition of the egg yolks of laying hens fed ALA-rich flaxseed oil for 8 weeks. The animals fed the experimental diets that contained 0 % (group C), 0.5 % (group T1), and 1.0 % (group T2) of flaxseed oil, respectively, and eggs and feces were obtained for the analyses. ω-3 fatty acids, including ALA, were increased in T1 and T2 compared with C. Furthermore, the freshness of eggs was improved with no side effects on the eggs. The diet also changed the fecal microbiota; Firmicutes was increased in T1 and T2 (48.6 to 83 and 79.6 %) and Bacteroidetes was decreased (40.2 to 8.8 and 4.2 %). Principal coordinate analysis revealed that Lactobacillus, among the 56 examined genera, was the most influenced bacterial group in terms of the fecal microbial community shifts. These results indicate that ALA-rich diets influenced both the egg and fecal microbiota in beneficial manners in laying hens although the association between the fatty acid composition of the egg yolk and the fecal microbiota was not clear. This study is a first step to understand the effect of flaxseed oil as well as intestinal microbiota of laying hens.


Asunto(s)
Dieta/métodos , Yema de Huevo/química , Huevos , Ácidos Grasos Omega-3/análisis , Heces/microbiología , Aceite de Linaza/administración & dosificación , Animales , Biota/efectos de los fármacos , Pollos , Citosol/química
3.
Biochemistry (Mosc) ; 76(4): 423-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21585317

RESUMEN

Glutathione (GSH) is an abundant nonprotein thiol that plays numerous roles within the cell. Previously, we showed that Lactobacillus salivarius has the capacity to mount a glutathione-mediated acid-tolerance response. In the present work we provide evidence of a requirement for GSH by Lactobacillus reuteri and have studied the role of GSH during cell growth. Medium supplementation with 0.5 mM GSH as the sole sulfur source enhanced cell growth, resulting in an increase in glucose consumption, and increased cell GSH and protein contents compared with levels seen in the absence of supplementation. Moreover, L. reuteri showed enhanced amino acid consumption when grown with 0.5 mM GSH. These findings indicate that glutathione is a nutrient for bacterial growth.


Asunto(s)
Glutatión/metabolismo , Limosilactobacillus reuteri/crecimiento & desarrollo , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Técnicas de Cultivo , Glucosa/metabolismo , Limosilactobacillus reuteri/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA