Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 21(1): 161, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964025

RESUMEN

BACKGROUND: Riboflavin is a precursor of FMN and FAD which act as coenzymes of numerous enzymes. Riboflavin is an important biotechnological commodity with annual market sales exceeding nine billion US dollars. It is used primarily as a component of feed premixes, a food colorant, a component of multivitamin mixtures and medicines. Currently, industrial riboflavin production uses the bacterium, Bacillus subtilis, and the filamentous fungus, Ashbya gossypii, and utilizes glucose and/or oils as carbon substrates. RESULTS: We studied riboflavin biosynthesis in the flavinogenic yeast Candida famata that is a genetically stable riboflavin overproducer. Here it was found that the wild type C. famata is characterized by robust growth on lactose and cheese whey and the engineered strains also overproduce riboflavin on whey. The riboflavin synthesis on whey was close to that obtained on glucose. To further enhance riboflavin production on whey, the gene of the transcription activator SEF1 was expressed under control of the lactose-induced promoter of the native ß-galactosidase gene LAC4. These transformants produced elevated amounts of riboflavin on lactose and especially on whey. The strain with additional overexpression of gene RIB6 involved in conversion of ribulose-5-phosphate to riboflavin precursor had the highest titer of accumulated riboflavin in flasks during cultivation on whey. Activation of riboflavin synthesis was also obtained after overexpression of the GND1 gene that is involved in the synthesis of the riboflavin precursor ribulose-5-phosphate. The best engineered strains accumulated 2.5 g of riboflavin/L on whey supplemented only with (NH4)2SO4 during batch cultivation in bioreactor with high yield (more than 300 mg/g dry cell weight). The use of concentrated whey inhibited growth of wild-type and engineered strains of C. famata, so the mutants tolerant to concentrated whey were isolated. CONCLUSIONS: Our data show that the waste of dairy industry is a promising substrate for riboflavin production by C. famata. Possibilities for using the engineered strains of C. famata to produce high-value commodity (riboflavin) from whey are discussed.


Asunto(s)
Queso , Candida/genética , Mononucleótido de Flavina , Glucosa , Lactosa , Fosfatos , Riboflavina , Suero Lácteo
2.
Front Microbiol ; 13: 877884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620098

RESUMEN

Traditional Chinese medicine is one of the ancient medicines which is popular in Asian countries, among which the residue produced by the use of anti-biodegradables is endless, and causes significant adverse impacts on the environment. However, the high acidity of anti-biodegradable residues and some special biological activities make it difficult for microorganisms to survive, resulting in a very low degradation rate of lignocellulose in naturally stacked residues, which directly impedes the degradation of residues. We aimed to identify the fungal strains that efficiently biodegrade anti-biodegradable residue and see the possibility to improve the biodegradation of it and other agricultural wastes by co-cultivating these fungi. We isolated 302 fungal strains from anti-biodegradable residue to test hydrolysis ability. Finally, we found Coniochaeta sp., Fomitopsis sp., Nemania sp., Talaromyces sp., Phaeophlebiopsis sp. which inhabit the anti-biodegradable residues are capable of producing higher concentrations of extracellular enzymes. Synergistic fungal combinations (viz., Fomitopsis sp. + Phaeophlebiopsis sp.; Talaromyces sp. + Coniochaeta sp. + Fomitopsis sp.; Talaromyces sp. + Fomitopsis sp. + Piloderma sp. and Talaromyces sp. + Nemania sp. + Piloderma sp.) have better overall degradation effect on lignocellulose. Therefore, these fungi and their combinations have strong potential to be further developed for bioremediation and biological enzyme industrial production.

3.
Syst Appl Microbiol ; 44(1): 126171, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33360414

RESUMEN

Two nitrogen-fixing and heavy oil degrading strains, designated RWY-5-1-1T and ROY-1-1-2, were isolated from an oil production mixture from Yumen Oilfield in China. The 16S rRNA gene sequence showed they belong to Azospirillum and have less than 96.1 % pairwise similarity with each species in this genus. The average nucleotide identity and digital DNA-DNA hybridization values between them and other type strains of Azospirillum species were less than 75.69 % and 22.0 %, respectively, both below the species delineation threshold. Pan-genomic analysis showed that the novel isolate RWY-5-1-1T shared 2145 core gene families with other type strains in Azospirillum, and the number of strain-specific gene families was 1623, almost two times more than the number known from other species. Furthermore, genes related to nitrogenase, hydrocarbon degradation and biosurfactant production were found in the isolates' genomes. Also, this strain was capable of reducing acetylene to ethylene at a rate of 22nmol ethylene h-1 (108 cells) and degrading heavy oil at a rate of 36.2 %. The major fatty acids and polar lipids were summed feature 8 (C18:1ω7c/C18:1ω6c), and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylcholine. Furthermore, a combination of phenotypic, chemotaxonomic, phylogenetic and genotypic data clearly indicated that strains RWY-5-1-1T and ROY-1-1-2 represent a novel species, for which the name Azospirillum oleiclasticum sp. nov. is proposed. The type strain is RWY-5-1-1T (=CGMCC 1.13426T =KCTC 72259 T). Azospirillum novel strains with the ability of heavy oil degradation associated with the promotion of plant growth has never been reported to date.


Asunto(s)
Azospirillum/clasificación , Fijación del Nitrógeno , Yacimiento de Petróleo y Gas/microbiología , Petróleo/metabolismo , Filogenia , Azospirillum/aislamiento & purificación , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
4.
Zhongguo Zhong Yao Za Zhi ; 41(15): 2883-2887, 2016 Aug.
Artículo en Chino | MEDLINE | ID: mdl-28914033

RESUMEN

To investigate the effect of turmeric volatile oil (TVO) on the apoptosis and proliferation of human skin SCC A431 cells, A431 cells were incubated with different concentrations (5-80 mg•L⁻¹) of TVO in vitro.The proliferation and cell cycle were assessed by CCK8 assay. The change of morphology was observed with inverted microscope. Apoptosis was evaluated with AO/EB double staining and flow cytometry (FCM); cell cycle was analyzed with FCM .Western blot method was used to detect caspase-3 and caspase-9 protein expression. Results indicated that TVO has significant inhibitory effects on the growth of A431 cells in a dose dependent relationship, the difference between groups has statistically significant (P<0.05). TVO group compared with control group, concentrations in cells shrivel and broken phenomenon, cell apoptosis rate increased, and a dose dependent and increased the expression of caspase-3 and caspase-9. The experiment results suggested that TVO could restrain skin squamous carcinoma A431 cells proliferation, and induce its apoptosis. The mechanism may be related to increase the expression of caspase-3 and caspase-9.


Asunto(s)
Apoptosis , Curcuma/química , Aceites Volátiles/farmacología , Piel/citología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA