Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 37(2): 731-742, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36196887

RESUMEN

Curcumin (Cur) is a natural active phenolic compound extracted from the root of Curcuma Longa L. It has anti-inflammatory, anti-tumor and other pharmacological activities, and is commonly used to treat ulcerative colitis (UC). However, it is not clear whether curcumin regulates the function and differentiation of Breg cells to treat UC. In this study, mice with chronic colitis were induced by dextran sulfate sodium (DSS), and treated with curcumin for 12 days. Curcumin effectively improved the body weight, colonic weight, colonic length, decreased colonic weight index and pathological injury score under colonoscopy in mice with chronic colitis, and significantly inhibited the production of IL-1ß, IL-6, IL-33, CCL-2, IFN-γ, TNF-α, and promoted the secretion of IL-4, IL-10, IL-13 and IgA. Importantly, curcumin markedly upregulated CD3- CD19+ CD1d+ , CD3- CD19+ CD25+ , CD3- CD19+ Foxp3+ Breg cells level and significantly down-regulated CD3- CD19+ PD-L1+ , CD3- CD19+ tim-1+ , CD3- CD19+ CD27+ Breg cells level. In addition, our results also showed that curcumin observably inhibited TLR2, TLR4, TLR5, MyD88, IRAK4, p-IRAK4, NF-κB P65, IRAK1, TRAF6, TAB1, TAB2, TAK1, MKK3, MKK6, p38MAPK, p-p38MAPK and CREB expression in TLR/MyD88 signaling pathway. These results suggest that curcumin can regulate the differentiation and function of Breg cell to alleviate DSS-induced colitis, which may be realized by inhibiting TLR/MyD88 pathway.


Asunto(s)
Linfocitos B Reguladores , Colitis Ulcerosa , Colitis , Curcumina , Ratones , Animales , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/farmacología , Quinasas Asociadas a Receptores de Interleucina-1/uso terapéutico , Linfocitos B Reguladores/metabolismo , Linfocitos B Reguladores/patología , Curcumina/farmacología , Curcumina/uso terapéutico , Factor 88 de Diferenciación Mieloide/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Transducción de Señal , Colon , FN-kappa B/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad
2.
Artículo en Inglés | MEDLINE | ID: mdl-35388299

RESUMEN

It is known that memory T cells (mT cell) and memory T follicular cells (mTfh) play vital roles in the IBD pathogenesis. Sishen Pill (SSP) is a classic prescription used to treat chronic ulcerative colitis (UC). However, it is still unclear whether SSP can regulate immune homeostasis induced by mT cell and mTfh to treat IBD. In this study, we measured mT cell and mTfh level to explore the conceivable mechanism of SSP-treated IBD. The mice colitis were induced by dextran sulfate sodium (DSS) and were treated by SSP for 7 days. The therapeutic effect of SSP was evaluated by macroscopic and microscopic observation; the mT cell, mTfh, and their subsets were analyzed by flow cytometry. Activation of the JAK/STAT signaling pathway was analyzed by using a Western blot. In the present study, SSP significantly reversed weight loss and colonic injury (colon weight increase and colonic length shortening) caused by 3% DSS in physiological saline solution. Flow cytometry showed that the percentages of CD4+ and CD8+ expressions on central memory T cells were enhanced after SSP treatment, while the CD4+ T cm, CD4+ mTfh (memory T follicular helper) cells and their subpopulations were also significantly increased. Moreover, SSP inhibited the expression of JAK/STAT signaling pathway proteins JAK1, PIAS3, STAT5, p-STAT5, BIM, BAX, caspase-3, and ß-casein and promoted the expression of JAK3, PISA1, Bcl-2, and caveolin-1. In summary, SSP can regulate immune homeostasis induced by mT cell and mTfh in DSS-induced colitis, which is potentially correlated with JAK/STAT signaling pathway activation.

3.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1300-1306, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-35343158

RESUMEN

This study aims to investigate the regulatory effect of Sishen Pills(SSP) and its split prescriptions Ershen Pills(EP) and Wuweizi Powder(WP) on T follicular helper(Tfh) cell subset in the dextran sodium sulfate(DSS)-induced colitis mice and the mechanism. A total of 60 male SPF BALB/c mice were used, 10 of which were randomly selected as the normal group. The rest 50 were induced with 3% DSS solution for colitis modeling. After modeling, they were randomized into 5 groups: model group, SSP group, EP group, WP group, and mesalazine group. Body mass, colon mass, colon mass index, colon length, and unit colon mass index in each group were observed. After hematoxylin-eosin(HE) staining, the pathological injury of colon tissue was scored. The expression levels of molecules related to the STAT/SOCS signaling pathway in colon tissues were analyzed by Western blot. Differentiation levels of Tfh cells such as CD4~+CXCR5~+IL-9~+(Tfh9), CD4~+CXCR5~+IL-17~+(Tfh17), and CD4~+CXCR5~+Foxp3~+(Tfr) in peripheral blood of mice were detected by flow cytometry. The results showed each treatment group demonstrated significant increase in body mass and colon length, decrease in colon mass, colon mass index, unit colon mass index, and histopathological score(P<0.05, P<0.01), reduction of the expression of p-STAT3, STAT3, p-STAT6, and STAT6(P<0.05, P<0.01), rise of the expression of SOCS1 and SOCS3(P<0.05, P<0.01), decrease of Tfh9 and Tfh17 cells, and increase of Tfr cells(P<0.05, P<0.01) compared with the model group. These results indicated that SSP and the split EP and WP may alleviate ulcerative colitis by inhibiting the activation of STAT/SOCS signaling pathway and regulating the balance of Tfr/Tfh9/Tfh17 cells.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Colitis Ulcerosa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Prescripciones , Linfocitos T Reguladores
4.
Phytother Res ; 36(4): 1708-1723, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35234309

RESUMEN

Diabetes mellitus (DM) is one of the most common complications in patients with ulcerative colitis (UC). Curcumin has a wide range of bioactive and pharmacological properties and is commonly used as an adjunct to the treatment of UC and DM. However, the role of curcumin in UC complicated by DM has not been elucidated. Therefore, this study was conducted to construct a model of UC complicating diabetes by inducing UC in DB mice (spontaneously diabetic) with dextran sodium sulfate. In this study, curcumin (100 mg/kg/day) significantly improved the symptoms of diabetes complicated by UC, with a lower insulin level, heavier weight, longer and lighter colons, fewer mucosal ulcers and less inflammatory cell infiltration. Moreover, compared to untreated DB mice with colitis, curcumin-treated mice showed weaker Th17 responses and stronger Treg responses. In addition, curcumin regulated the diversity and relative abundance of intestinal microbiota in mice with UC complicated by DM at the phylum, class, order, family and genus levels. Collectively, curcumin effectively alleviated colitis in mice with type 2 diabetes mellitus by restoring the homeostasis of Th17/Treg and improving the composition of the intestinal microbiota.


Asunto(s)
Colitis Ulcerosa , Colitis , Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Colitis/tratamiento farmacológico , Colitis Ulcerosa/tratamiento farmacológico , Colon , Curcumina/farmacología , Curcumina/uso terapéutico , Sulfato de Dextran , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-34567209

RESUMEN

Curcumin has shown good efficacy in mice with experimental colitis and in patients with ulcerative colitis, but the mechanism of action through the regulation of M1/M2 macrophage polarization has not been elaborated. The ulcerative colitis was modeled by dextran sulfate sodium; colitis mice were orally administrated with curcumin (10 mg/kg/day) or 5-ASA (300 mg/kg/day) for 14 consecutive days. After curcumin treatment, the body weight, colon weight and length, colonic weight index, and histopathological damage in colitis mice were effectively improved. The concentrations of proinflammatory cytokines IL-1ß, IL-6, and CCL-2 in the colonic tissues of colitis mice decreased significantly, while anti-inflammatory cytokines IL-33 and IL-10 increased significantly. Importantly, macrophage activation was suppressed and M1/M2 macrophage polarization was regulated in colitis mice, and the percentage of CD11b+F4/80+ and CD11b+F4/80+TIM-1+ and CD11b+F4/80+iNOS+ decreased significantly and CD11b+F4/80+CD206+ and CD11b+F4/80+CD163+ increased significantly. Additionally, curcumin significantly downregulated CD11b+F4/80+TLR4+ macrophages and the protein levels of TLR2, TLR4, MyD88, NF-κBp65, p38MAPK, and AP-1 in colitis mice. Our study suggested that curcumin exerted therapeutic effects in colitis mice by regulating the balance of M1/M2 macrophage polarization and TLRs signaling pathway.

6.
Pharmacol Rep ; 73(3): 700-711, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33462754

RESUMEN

Inflammatory bowel disease (IBD) is an autoimmune disease mediated by immune disorder and termed as one of the most refractory diseases by the Word Health Organization. Its morbidity has increased steadily over the past half century worldwide. Environmental, genetic, infectious, and immune factors are integral to the pathogenesis of IBD. Commonly known as the king of herbs, ginseng has been consumed in many countries for the past 2000 years. Its active ingredient ginsenosides, as the most prominent saponins of ginseng, have a wide range of pharmacological effects. Recent studies have confirmed that the active components of Panax ginseng have anti-inflammatory and immunomodulatory effects on IBD, including regulating the balance of immune cells, inhibiting the expression of cytokines, as well as activating Toll-like receptor 4, Nuclear factor-kappa B (NF-κB), nucleotide-binding oligomerization domain-like receptor (NLRP), mitogen-activated protein kinase signaling, and so on. Accumulated evidence indicates that ginsenosides may serve as a potential novel therapeutic drug or health product additive in IBD prevention and treatment in the future.


Asunto(s)
Antiinflamatorios/farmacología , Ginsenósidos/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Panax/química , Animales , Citocinas/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA