Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Chin Med ; 50(3): 673-690, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282806

RESUMEN

Acupuncture has been used to treat numerous diseases such as obesity in China for thousands of years. Several mechanisms of acupuncture on obesity have been surveyed based on metabolomics, but the effects of acupuncture on the alterations in the gut flora are still unclear. In this study, an integrated approach based on 16S rRNA gene sequencing combined with high-performance liquid chromatography-mass spectrometry (HPLC-MS) metabolic profiling was conducted to investigate the effects of acupuncture on high-fat-diet-induced obesity through the regulation of the relative abundances of gut microbiota and their relationships with biomarker candidates. A total of 10 significantly altered bacterial genera and 11 metabolites were recognized, which recovered to normal levels after electroacupuncture treatment. The relative abundances of the bacterial families Muribaculaceae,Lachnospiraceae,Desulfovibrionaceae,Helicobacteraceae, Prevotellaceae,Ruminococcaceae,Rikenellaceae,Deferribacteraceae,Bacteroidaceae andTannerellaceaewere remarkedly changed among the three groups. Potential biomarkers, including LysoPC(0:0/16:0) ([Formula: see text]1),PC(0:0/18:0) ([Formula: see text]2),Cholic acid([Formula: see text]3),LysoPC(16:0) ([Formula: see text]4), 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid([Formula: see text]5), 5beta-Cyprinolsulfate([Formula: see text]6),PC(18:0/0:0) ([Formula: see text]7), 1-Nitro-5-hydroxy-6-glutathionyl-5,6-dihydronaphthalene([Formula: see text]8),Glycocholic acid([Formula: see text]9),[Formula: see text]-Arginine([Formula: see text]10) andGulonic acid([Formula: see text]11), were involved in several metabolic pathways, such as the glycerophospholipid metabolism and primary bile acid biosynthesis. Interestingly, there was a strong correlation between the perturbed gut flora in Bilophila and Bifidobacterium and the altered intestinal metabolite of 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid and Cholanoic acid and [Formula: see text]-Arginine. This finding suggested that the effects of electroacupuncture might change the proportions of Bilophila and Bifidobacterium by regulating the constituents of the functional metabolite of 3[Formula: see text],6[Formula: see text],7[Formula: see text]-Trihydroxy-5[Formula: see text]-cholanoic acid and Cholanoic acid and [Formula: see text]-Arginine. These results indicated that the effects of electroacupuncture focused on custom metabolic pathways as well as depend on the changes in the gut microbiota in obesity. These findings suggest that the 16S rRNA gene sequencing and HPLC-MS-based metabolomics approach can be applied to comprehensively assess the effects of traditional Chinese medicines.


Asunto(s)
Electroacupuntura , Microbioma Gastrointestinal , Animales , Arginina , Bacterias , Cromatografía Líquida de Alta Presión , Genes de ARNr , Humanos , Espectrometría de Masas , Metaboloma , Metabolómica , Ratones , Ratones Obesos , Obesidad/genética , Obesidad/terapia , ARN Ribosómico 16S/genética
2.
Zhen Ci Yan Jiu ; 41(1): 35-9, 50, 2016 Feb.
Artículo en Chino | MEDLINE | ID: mdl-27141618

RESUMEN

OBJECTIVE: To observe The effect of electroacupuncture (EA) stimulation of "Zusanli" (ST 36) and "Taichong" (LR 3) on intestinal motor and neurotensin (NT) levels in the plasma, hypothalamus, and gastro-antrum tissues in functional dyspepsia (FD) rats so as to reveal its mechanisms underlying improvement of FD. METHODS: Forty-eight SD rats were randomly divided into control, model and EA groups, with 16 rats in each group. The FD model was established by clamping the rats' tails and alternate day's feeding according to the related references. EA (2 Hz/100 Hz, 2 mA) was applied to unilateral ST 36 and LR 3 for 30 min, once daily for 14 days. Rats of the control group were only restricted. The gastric emptying rate and propulsive rate of the small intestine were detected. The content of NT in the plasma was assayed using ELISA, and the immunoactivity levels of NT in the hypothalamus, gastric antrum mucous membrane and ileum tissues were detected using immunohistochemistry. RESULTS: Compared with the control group, the gastric emptying rate and propulsive rate of the small intestine were considerably lowered in the model group (P < 0.01), and the content and immunoactivity levels of NT in the plasma, hypothalamus, mucous membrane of the gastric antrum and ileum tissues were significantly increased (P < 0.05). After EA intervention, the decreased gastric emptying rate and intestinal propulsive rate, as well as the increased NT content and immunoactivity levels of plasma, hypothalamus, gastric antrum and ileum were reversed (P < 0.05). CONCLUSION: EA intervention can obviously promote gastrointestinal motor in FD rats, which may be related to its function in down-regulating NT levels in the plasma, hypothalamus, gastric antrum and ileum. It suggests an involvement of NT in the brain-gut axis in EA-induced improvement of FD.


Asunto(s)
Dispepsia/terapia , Electroacupuntura , Neurotensina/genética , Puntos de Acupuntura , Animales , Encéfalo/metabolismo , Dispepsia/genética , Dispepsia/metabolismo , Dispepsia/fisiopatología , Femenino , Vaciamiento Gástrico , Mucosa Gástrica/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Neurotensina/metabolismo , Antro Pilórico/metabolismo , Ratas , Ratas Sprague-Dawley , Estómago/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA