Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Muscle Res Cell Motil ; 43(3): 147-156, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35854160

RESUMEN

Eccentric contraction (ECC) often results in large and long-lasting force deficits accompanied by muscle soreness, primarily due to muscle damage. In this sense, exercises that involve ECC are less desirable. Paradoxically, exercise training that includes a substantial eccentric phase leads to a more powerful activation of the genes responsible for skeletal muscle remodeling (e.g., hypertrophy) than other types of training that emphasize a concentric or isometric phase. Therefore, effective strategies that lessen ECC-induced muscle damage will be of interest and importance to many individuals. The purpose of this brief review is to highlight the published literature on the effects of ECC and/or nutritional supplementations on proteins, lipids, metabolic and ionic changes, and enzyme activities in skeletal muscles subjected to an acute bout of ECC. First, we discuss the potential mechanisms by which ECC causes muscle damage. Previous findings implicate a Ca2+ overload-oxidative modification pathway as one possible mechanism contributing to muscle damage. Thereafter, the efficacy of two nutritional supplementations, i.e., L-arginine and antioxidant, is discussed because L-arginine and antioxidant would be expected to ameliorate the adverse effects of Ca2+ overload and oxidative modification, respectively. Of these, L-arginine ingestion before ECC seems likely to be the effective strategy for mitigating ECC-related proteolysis. More studies are needed to establish the effectiveness of antioxidant ingestion. The application of effective strategies against muscle damage may contribute to improvements in health and fitness, muscle function, and sports performance.


Asunto(s)
Antioxidantes , Contracción Muscular , Arginina , Suplementos Dietéticos , Humanos , Músculo Esquelético
2.
Molecules ; 24(2)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650646

RESUMEN

We have previously found two novel monoterpene glycosides, liguroside A and liguroside B, with an inhibitory effect on the catalytic activity of the enzyme leukocyte-type 12-lipoxygenase in the Qing Shan Lu Shui tea. Here, two new monoterpene glycosides, liguroside C and liguroside D which inhibit this enzyme, were isolated from the same tea. The spectral and chemical evidence characterized the structures of these compounds as (5E)-7-hydroperoxy-3,7-dimethyl-1,5-octadienyl-3-O-(α-l-rhamnopyranosyl)-(1''→3')-(4'''-O-trans-p-coumaroyl)-ß-d-glucopyranoside and (2E)-6-hydroxy-3,7-dimethyl-2,7-octadienyl-3-O-(α-l-rhamnopyranosyl)-(1''→3')-(4'''-O-trans-p-coumaroyl)-ß-d-glucopyranoside, respectively. These ligurosides, which irreversibly inhibited leukocyte-type 12-lipoxygenase, have a hydroperoxy group in the monoterpene moiety. Additionally, monoterpene glycosides had the same backbone structure but did not have a hydroperoxy group, such as kudingoside A and lipedoside B-III, contained in the tea did not inhibit the enzyme. When a hydroperoxy group in liguroside A was reduced by using triphenylphosphine, the resultant compound, kudingoside B, showed a lower inhibitory effect on the enzyme. These results strongly suggest the involvement of the hydroperoxy group in the irreversible inhibition of the catalytic activity of leukocyte-type 12-lipoxygenase by the monoterpene glycosides contained in the Qing Shan Lu Shui tea.


Asunto(s)
Leucocitos/efectos de los fármacos , Leucocitos/enzimología , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Té/química , Araquidonato 12-Lipooxigenasa/química , Relación Dosis-Respuesta a Droga , Glicósidos/química , Glicósidos/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Monoterpenos/química , Monoterpenos/farmacología
3.
PLoS One ; 12(6): e0179925, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28636643

RESUMEN

Skeletal muscle weakness is a prominent feature in patients with rheumatoid arthritis (RA). In this study, we investigated whether neuromuscular electrical stimulation (NMES) training protects against skeletal muscle dysfunction in rats with adjuvant-induced arthritis (AIA). AIA was produced by intraarticular injection of complete Freund's adjuvant into the knees of Wistar rats. For NMES training, dorsiflexor muscles were stimulated via a surface electrode (0.5 ms pulse, 50 Hz, 2 s on/4 s off). NMES training was performed every other day for three weeks and consisted of three sets produced at three min intervals. In each set, the electrical current was set to achieve 60% of the initial maximum isometric torque and the current was progressively increased to maintain this torque; stimulation was stopped when the 60% torque could no longer be maintained. After the intervention period, extensor digitorum longus (EDL) muscles were excised and used for physiological and biochemical analyses. There was a reduction in specific force production (i.e. force per cross-sectional area) in AIA EDL muscles, which was accompanied by aggregation of the myofibrillar proteins actin and desmin. Moreover, the protein expressions of the pro-oxidative enzymes NADPH oxidase, neuronal nitric oxide synthase, p62, and the ratio of the autophagosome marker LC3bII/LC3bI were increased in AIA EDL muscles. NMES training prevented all these AIA-induced alterations. The present data suggest that NMES training prevents AIA-induced skeletal muscle weakness presumably by counteracting the formation of actin and desmin aggregates. Thus, NMES training can be an effective treatment for muscle dysfunction in patients with RA.


Asunto(s)
Artritis Experimental/terapia , Músculo Esquelético/metabolismo , Actinas/metabolismo , Animales , Artritis Experimental/metabolismo , Artritis Experimental/fisiopatología , Desmina/metabolismo , Terapia por Estimulación Eléctrica , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Ácido Peroxinitroso/farmacología , Ratas , Ratas Wistar , Proteína Sequestosoma-1/metabolismo , Superóxido Dismutasa/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA