Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Sci ; 340: 111972, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176527

RESUMEN

Little is known about the molecular basis of host defense in resistant wild species Zingiber zerumbet (L.) Smith against the soil-borne, necrotrophic oomycete pathogen Pythium myriotylum Drechsler, which causes the devastating soft rot disease in the spice crop ginger (Zingiber officinale Roscoe). We investigated the pattern of host defense between Z. zerumbet and ginger in response to P. myriotylum inoculation. Analysis of gene expression microarray data revealed enrichment of phenylpropanoid biosynthetic genes, particularly lignin biosynthesis genes, in pathogen-inoculated Z. zerumbet compared to ginger. RT-qPCR analysis showed the robust activation of phenylpropanoid biosynthesis genes in Z. zerumbet, including the core genes PAL, C4H, 4CL, and the monolignol biosynthesis and polymerization genes such as CCR, CAD, C3H, CCoAOMT, F5H, COMT, and LAC. Additionally, Z. zerumbet exhibited the accumulation of the phenolic acids including p-coumaric acid, sinapic acid, and ferulic acid that are characteristic of the cell walls of commelinoid monocots like Zingiberaceae and are involved in cell wall strengthening by cross linking with lignin. Z. zerumbet also had higher total lignin and total phenolics content compared to pathogen-inoculated ginger. Phloroglucinol staining revealed the enhanced fortification of cell walls in Z. zerumbet, specifically in xylem vessels and surrounding cells. The trypan blue staining indicated inhibition of pathogen growth in Z. zerumbet at the first leaf whorl, while ginger showed complete colonization of the pith within 36 h post inoculation (hpi). Accumulation of salicylic acid (SA) and induction of SA regulator NPR1 and the signaling marker PR1 were observed in Z. zerumbet. Silencing of PAL in Z. zerumbet through VIGS suppressed downstream genes, leading to reduced phenylpropanoid accumulation and SA level, resulting in the susceptibility of plants to P. myriotylum. These findings highlight the essential role of PAL-dependent mechanisms in resistance against P. myriotylum in Z. zerumbet. Moreover, our results suggest an unconventional role for SA in mediating host resistance against a necrotroph. Targeting the phenylpropanoid pathway could be a promising strategy for the effective management of P. myriotylum in ginger.


Asunto(s)
Pythium , Zingiber officinale , Zingiberaceae , Pythium/genética , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/farmacología , Lignina , Ácido Salicílico/farmacología , Zingiberaceae/genética
2.
Genomics ; 113(5): 3224-3234, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34273496

RESUMEN

Germins and germin-like proteins (GLPs) were reported to participate in plant response to biotic and abiotic stresses involving hydrogen peroxide (H2O2) production, but their role in mitigating heat stress is poorly understood. Here, we investigated the ability of a Solanum tuberosum L. GLP (StGLP) gene isolated from the yeast cDNA library generated from heat-stressed potato plants and characterized its role in generating innate and/or acquired thermo-tolerance to potato via genetic transformation. The transgenic plants exhibited enhanced tolerance to gradual heat stress (GHS) compared with sudden heat shock (SHS) in terms of maximal cell viability, minimal ion leakage and reduced chlorophyll breakdown. Further, three StGLP transgenic lines (G9, G12 and G15) exhibited enhanced production of H2O2, which was either reduced or blocked by inhibitors of H2O2 under normal and heat stress conditions. This tolerance was mediated by up-regulation of antioxidant enzymes (catalase, ascorbate peroxidase and glutathione reductase) and other heat stress-responsive genes (StHSP70, StHSP20 and StHSP90) in transgenic potato plants. These results demonstrate that H2O2 produced by over-expression of StGLP in transgenic potato plants triggered the reactive oxygen species (ROS) scavenging signaling pathways controlling antioxidant and heat stress-responsive genes in these plants imparting tolerance to heat stress.


Asunto(s)
Solanum tuberosum , Regulación de la Expresión Génica de las Plantas , Glicoproteínas , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estrés Fisiológico/genética
3.
C R Biol ; 336(11-12): 530-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24296077

RESUMEN

Identification of major stress tolerance genes of a crop plant is important for the rapid development of its stress-tolerant cultivar. Here, we used a yeast functional screen method to identify potential drought-tolerance genes from a potato plant. A cDNA expression library was constructed from hyperosmotic stressed potato plants. The yeast transformants expressing different cDNAs were selected for their ability to survive in hyperosmotic stress conditions. The relative tolerances of the selected yeast transformants to multiple abiotic stresses were also studied. Specific potato cDNAs expressed in the tolerant yeast transformants were identified. Sixty-nine genes were found capable of enhancing hyperosmotic stress tolerance of yeast. Based on the relative tolerance data generated, 12 genes were selected, which could be most effective in imparting higher drought tolerance to potato with better survival in salt and high-temperature stresses. Orthologues of few genes identified here are previously known to increase osmotic stress tolerance of yeast and plants; however, specific studies are needed to confirm their role in the osmotic stress tolerance of potato.


Asunto(s)
Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Sequías , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiología , Clonación Molecular , Medios de Cultivo , ADN Complementario/biosíntesis , ADN Complementario/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Galactoquinasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Calor , Presión Osmótica/fisiología , Plásmidos/genética , Plásmidos/fisiología , ARN de Planta/biosíntesis , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA