Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inhal Toxicol ; 35(9-10): 241-253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37330949

RESUMEN

OBJECTIVE: Workers may be exposed to vapors emitted from crude oil in upstream operations in the oil and gas industry. Although the toxicity of crude oil constituents has been studied, there are very few in vivo investigations designed to mimic crude oil vapor (COV) exposures that occur in these operations. The goal of the current investigation was to examine lung injury, inflammation, oxidant generation, and effects on the lung global gene expression profile following a whole-body acute or sub-chronic inhalation exposure to COV. MATERIALS AND METHODS: To conduct this investigation, rats were subjected to either a whole-body acute (6 hr) or a sub-chronic (28 d) inhalation exposure (6 hr/d × 4 d/wk × 4 wk) to COV (300 ppm; Macondo well surrogate oil). Control rats were exposed to filtered air. One and 28 d after acute exposure, and 1, 28, and 90 d following sub-chronic exposure, bronchoalveolar lavage was performed on the left lung to collect cells and fluid for analyses, the apical right lobe was preserved for histopathology, and the right cardiac and diaphragmatic lobes were processed for gene expression analyses. RESULTS: No exposure-related changes were identified in histopathology, cytotoxicity, or lavage cell profiles. Changes in lavage fluid cytokines indicative of inflammation, immune function, and endothelial function after sub-chronic exposure were limited and varied over time. Minimal gene expression changes were detected only at the 28 d post-exposure time interval in both the exposure groups. CONCLUSION: Taken together, the results from this exposure paradigm, including concentration, duration, and exposure chamber parameters, did not indicate significant and toxicologically relevant changes in markers of injury, oxidant generation, inflammation, and gene expression profile in the lung.


Asunto(s)
Petróleo , Neumonía , Ratas , Animales , Petróleo/toxicidad , Petróleo/metabolismo , Transcriptoma , Neumonía/patología , Pulmón , Gases/análisis , Gases/metabolismo , Gases/farmacología , Inflamación/patología , Oxidantes/metabolismo , Líquido del Lavado Bronquioalveolar , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis
2.
Toxicol Appl Pharmacol ; 450: 116154, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798068

RESUMEN

Workers involved in oil exploration and production in the upstream petroleum industry are exposed to crude oil vapor (COV). COV levels in the proximity of workers during production tank gauging and opening of thief hatches can exceed regulatory standards, and several deaths have occurred after opening thief hatches. There is a paucity of information regarding the effects of COV inhalation in the lung. To address these knowledge gaps, the present hazard identification study was undertaken to investigate the effects of an acute, single inhalation exposure (6 h) or a 28 d sub-chronic exposure (6 h/d × 4 d/wk × 4 wks) to COV (300 ppm; Macondo well surrogate oil) on ventilatory and non-ventilatory functions of the lung in a rat model 1 and 28 d after acute exposure, and 1, 28 and 90 d following sub-chronic exposure. Basal airway resistance was increased 90 d post-sub-chronic exposure, but reactivity to methacholine (MCh) was unaffected. In the isolated, perfused trachea preparation the inhibitory effect of the airway epithelium on reactivity to MCh was increased at 90 d post-exposure. Efferent cholinergic nerve activity regulating airway smooth muscle was unaffected by COV exposure. Acute exposure did not affect basal airway epithelial ion transport, but 28 d after sub-chronic exposure alterations in active (Na+ and Cl¯) and passive ion transport occurred. COV treatment did not affect lung vascular permeability. The findings indicate that acute and sub-chronic COV inhalation does not appreciably affect ventilatory properties of the rat, but transient changes in airway epithelium occur.


Asunto(s)
Petróleo , Resistencia de las Vías Respiratorias , Animales , Exposición por Inhalación/efectos adversos , Pulmón , Cloruro de Metacolina/farmacología , Petróleo/toxicidad , Ratas
3.
Toxicol Appl Pharmacol ; 449: 116137, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35750205

RESUMEN

Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300 ppm; Macondo surrogate crude oil) following an acute (6 h/d × 1 d) or sub-chronic (6 h/d × 4 d/wk. × 4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated.


Asunto(s)
Síndromes de Neurotoxicidad , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Gases , Masculino , Síndromes de Neurotoxicidad/etiología , Neurotransmisores , Ratas , Ratas Sprague-Dawley , Serotonina , Contaminantes Químicos del Agua/toxicidad
4.
Toxicol Appl Pharmacol ; 447: 116071, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35598716

RESUMEN

Workers in the oil and gas extraction industry are at risk of inhaling volatile organic compounds. Epidemiological studies suggest oil vapor inhalation may affect cardiovascular health. Thus, in this hazard identification study we investigated the effects of inhalation of crude oil vapor (COV) on cardiovascular function. Male rats were exposed to air or COV (300 ppm) for 6 h (acute), or 6 h/day × 4 d/wk. × 4 wk. (sub-chronic). The effects of COV inhalation were assessed 1, 28, and 90 d post-exposure. Acute exposure to COV resulted in reductions in mean arterial and diastolic blood pressures 1 and 28 d after exposure, changes in nitrate-nitrite and H2O2 levels, and in the expression of transcripts and proteins that regulate inflammation, vascular remodeling, and the synthesis of nitric oxide (NO) in the heart and kidneys. The sub-chronic exposure resulted in a reduced sensitivity to α1-adrenoreceptor-mediated vasoconstriction in vitro 28 d post-exposure, and a reduction in oxidative stress in the heart. Sub-chronic COV exposure led to alterations in the expression of NO synthases and anti-oxidant enzymes, which regulate inflammation and oxidative stress in the heart and kidneys. There seems to be a balance between changes in the expression of transcripts associated with the generation of reactive oxygen species (ROS) and antioxidant enzymes. The ability of antioxidant enzymes to reduce or inhibit the effects of ROS may allow the cardiovascular system to adapt to acute COV exposures. However, sub-chronic exposures may result in longer-lasting negative health consequences on the cardiovascular system.


Asunto(s)
Sistema Cardiovascular , Petróleo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Sistema Cardiovascular/metabolismo , Gases/farmacología , Peróxido de Hidrógeno/farmacología , Inflamación , Exposición por Inhalación/efectos adversos , Masculino , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno/metabolismo
5.
Toxicol Appl Pharmacol ; 409: 115282, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33068622

RESUMEN

Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences.


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Arena/química , Silicosis/etiología , Tráquea/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Polvo , Fracking Hidráulico/métodos , Masculino , Exposición Profesional/efectos adversos , Neumonía/inducido químicamente , Cuarzo/efectos adversos , Ratas , Ratas Sprague-Dawley , Dióxido de Silicio/efectos adversos
6.
PLoS One ; 13(12): e0209413, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30586399

RESUMEN

In 2017, the International Agency for Research on Cancer classified welding fumes as "carcinogenic to humans" (Group 1). Both mild steel (MS) welding, where fumes lack carcinogenic chromium and nickel, and stainless steel (SS) increase lung cancer risk in welders; therefore, further research to better understand the toxicity of the individual metals is needed. The objectives were to (1) compare the pulmonary toxicity of chromium (as Cr(III) oxide [Cr2O3] and Cr (VI) calcium chromate [CaCrO4]), nickel [II] oxide (NiO), iron [III] oxide (Fe2O3), and gas metal arc welding-SS (GMAW-SS) fume; and (2) determine if these metal oxides can promote lung tumors. Lung tumor susceptible A/J mice (male, 4-5 weeks old) were exposed by oropharyngeal aspiration to vehicle, GMAW-SS fume (1.7 mg), or a low or high dose of surrogate metal oxides based on the respective weight percent of each metal in the fume: Cr2O3 + CaCrO4 (366 + 5 µg and 731 + 11 µg), NiO (141 and 281 µg), or Fe2O3 (1 and 2 mg). Bronchoalveolar lavage, histopathology, and lung/liver qPCR were done at 1, 7, 28, and 84 days post-aspiration. In a two-stage lung carcinogenesis model, mice were initiated with 3-methylcholanthrene (10 µg/g; intraperitoneal; 1x) or corn oil then exposed to metal oxides or vehicle (1 x/week for 5 weeks) by oropharyngeal aspiration. Lung tumors were counted at 30 weeks post-initiation. Results indicate the inflammatory potential of the metal oxides was Fe2O3 > Cr2O3 + CaCrO4 > NiO. Overall, the pneumotoxic effects were negligible for NiO, acute but not persistent for Cr2O3 + CaCrO4, and persistent for the Fe2O3 exposures. Fe2O3, but not Cr2O3 + CaCrO4 or NiO significantly promoted lung tumors. These results provide experimental evidence that Fe2O3 is an important mediator of welding fume toxicity and support epidemiological findings and the IARC classification.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Carcinógenos/toxicidad , Compuestos Férricos/toxicidad , Neoplasias Pulmonares/inducido químicamente , Soldadura/métodos , Animales , Compuestos de Calcio/toxicidad , Carcinogénesis/inducido químicamente , Cromatos/toxicidad , Compuestos de Cromo/toxicidad , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/patología , Masculino , Metilcolantreno/toxicidad , Ratones , Níquel/toxicidad , Acero Inoxidable/química , Acero Inoxidable/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA