Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Am Coll Cardiol ; 68(16): 1756-1764, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27737742

RESUMEN

BACKGROUND: QT interval-prolonging drug-drug interactions (QT-DDIs) may increase the risk of life-threatening arrhythmia. Despite guidelines for testing from regulatory agencies, these interactions are usually discovered after drugs are marketed and may go undiscovered for years. OBJECTIVES: Using a combination of adverse event reports, electronic health records (EHR), and laboratory experiments, the goal of this study was to develop a data-driven pipeline for discovering QT-DDIs. METHODS: 1.8 million adverse event reports were mined for signals indicating a QT-DDI. Using 1.6 million electrocardiogram results from 380,000 patients in our institutional EHR, these putative interactions were either refuted or corroborated. In the laboratory, we used patch-clamp electrophysiology to measure the human ether-à-go-go-related gene (hERG) channel block (the primary mechanism by which drugs prolong the QT interval) to evaluate our top candidate. RESULTS: Both direct and indirect signals in the adverse event reports provided evidence that the combination of ceftriaxone (a cephalosporin antibiotic) and lansoprazole (a proton-pump inhibitor) will prolong the QT interval. In the EHR, we found that patients taking both ceftriaxone and lansoprazole had significantly longer QTc intervals (up to 12 ms in white men) and were 1.4 times more likely to have a QTc interval above 500 ms. In the laboratory, we found that, in combination and at clinically relevant concentrations, these drugs blocked the hERG channel. As a negative control, we evaluated the combination of lansoprazole and cefuroxime (another cephalosporin), which lacked evidence of an interaction in the adverse event reports. We found no significant effect of this pair in either the EHR or in the electrophysiology experiments. Class effect analyses suggested this interaction was specific to lansoprazole combined with ceftriaxone but not with other cephalosporins. CONCLUSIONS: Coupling data mining and laboratory experiments is an efficient method for identifying QT-DDIs. Combination therapy of ceftriaxone and lansoprazole is associated with increased risk of acquired long QT syndrome.


Asunto(s)
Ceftriaxona/farmacología , Cefuroxima/farmacología , Minería de Datos , Lansoprazol/farmacología , Síndrome de QT Prolongado/inducido químicamente , Inhibidores de la Bomba de Protones/farmacología , Anciano , Ceftriaxona/efectos adversos , Cefuroxima/efectos adversos , Interacciones Farmacológicas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Registros Electrónicos de Salud , Técnicas Electrofisiológicas Cardíacas , Femenino , Humanos , Lansoprazol/efectos adversos , Masculino , Persona de Mediana Edad , Técnicas de Placa-Clamp , Inhibidores de la Bomba de Protones/efectos adversos
2.
Proc Natl Acad Sci U S A ; 110(21): 8732-7, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23650380

RESUMEN

Voltage-gated KCNQ1 (Kv7.1) potassium channels are expressed abundantly in heart but they are also found in multiple other tissues. Differential coassembly with single transmembrane KCNE beta subunits in different cell types gives rise to a variety of biophysical properties, hence endowing distinct physiological roles for KCNQ1-KCNEx complexes. Mutations in either KCNQ1 or KCNE1 genes result in diseases in brain, heart, and the respiratory system. In addition to complexities arising from existence of five KCNE subunits, KCNE1 to KCNE5, recent studies in heterologous systems suggest unorthodox stoichiometric dynamics in subunit assembly is dependent on KCNE expression levels. The resultant KCNQ1-KCNE channel complexes may have a range of zero to two or even up to four KCNE subunits coassembling per KCNQ1 tetramer. These findings underscore the need to assess the selectivity of small-molecule KCNQ1 modulators on these different assemblies. Here we report a unique small-molecule gating modulator, ML277, that potentiates both homomultimeric KCNQ1 channels and unsaturated heteromultimeric (KCNQ1)4(KCNE1)n (n < 4) channels. Progressive increase of KCNE1 or KCNE3 expression reduces efficacy of ML277 and eventually abolishes ML277-mediated augmentation. In cardiomyocytes, the slowly activating delayed rectifier potassium current, or IKs, is believed to be a heteromultimeric combination of KCNQ1 and KCNE1, but it is not entirely clear whether IKs is mediated by KCNE-saturated KCNQ1 channels or by channels with intermediate stoichiometries. We found ML277 effectively augments IKs current of cultured human cardiomyocytes and shortens action potential duration. These data indicate that unsaturated heteromultimeric (KCNQ1)4(KCNE1)n channels are present as components of IKs and are pharmacologically distinct from KCNE-saturated KCNQ1-KCNE1 channels.


Asunto(s)
Canal de Potasio KCNQ1/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Piperidinas/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Multimerización de Proteína/efectos de los fármacos , Tiazoles/farmacología , Compuestos de Tosilo/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Canal de Potasio KCNQ1/genética , Proteínas Musculares/genética , Miocitos Cardíacos/citología , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética
3.
Proc Natl Acad Sci U S A ; 107(52): 22710-5, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149716

RESUMEN

The delayed rectifier I(Ks) potassium channel, formed by coassembly of α- (KCNQ1) and ß- (KCNE1) subunits, is essential for cardiac function. Although KCNE1 is necessary to reproduce the functional properties of the native I(Ks) channel, the mechanism(s) through which KCNE1 modulates KCNQ1 is unknown. Here we report measurements of voltage sensor movements in KCNQ1 and KCNQ1/KCNE1 channels using voltage clamp fluorometry. KCNQ1 channels exhibit indistinguishable voltage dependence of fluorescence and current signals, suggesting a one-to-one relationship between voltage sensor movement and channel opening. KCNE1 coexpression dramatically separates the voltage dependence of KCNQ1/KCNE1 current and fluorescence, suggesting an imposed requirement for movements of multiple voltage sensors before KCNQ1/KCNE1 channel opening. This work provides insight into the mechanism by which KCNE1 modulates the I(Ks) channel and presents a mechanism for distinct ß-subunit regulation of ion channel proteins.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Transducción de Señal/fisiología , Algoritmos , Animales , Femenino , Fluorometría/métodos , Humanos , Activación del Canal Iónico/genética , Canal de Potasio KCNQ1/genética , Potenciales de la Membrana , Microinyecciones , Modelos Biológicos , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética , ARN Complementario/administración & dosificación , ARN Complementario/genética , Transducción de Señal/genética , Xenopus laevis
4.
Circ Res ; 96(5): e25-34, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15731462

RESUMEN

I(Ks), the slowly activating component of the delayed rectifier current, plays a major role in repolarization of the cardiac action potential (AP). Genetic mutations in the alpha- (KCNQ1) and beta- (KCNE1) subunits of I(Ks) underlie Long QT Syndrome type 1 and 5 (LQT-1 and LQT-5), respectively, and predispose carriers to the development of polymorphic ventricular arrhythmias and sudden cardiac death. beta-adrenergic stimulation increases I(Ks) and results in rate dependent AP shortening, a control system that can be disrupted by some mutations linked to LQT-1 and LQT-5. The mechanisms by which I(Ks) regulates action potential duration (APD) during beta-adrenergic stimulation at different heart rates are not known, nor are the consequences of mutation induced disruption of this regulation. Here we develop a complementary experimental and theoretical approach to address these questions. We reconstituted I(Ks) in CHO cells (ie, KCNQ1 coexpressed with KCNE1 and the adaptator protein Yotiao) and quantitatively examined the effects of beta-adrenergic stimulation on channel kinetics. We then developed theoretical models of I(Ks) in the absence and presence of beta-adrenergic stimulation. We simulated the effects of sympathetic stimulation on channel activation (speeding) and deactivation (slowing) kinetics on the whole cell action potential under different pacing conditions. The model suggests these kinetic effects are critically important in rate-dependent control of action potential duration. We also investigate the effects of two LQT-5 mutations that alter kinetics and impair sympathetic stimulation of I(Ks) and show the likely mechanism by which they lead to tachyarrhythmias and indicate a distinct role of I(KS) kinetics in this electrical dysfunction. The full text of this article is available online at http://circres.ahajournals.org.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas del Citoesqueleto/fisiología , Miocitos Cardíacos/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Sistema Nervioso Simpático/fisiología , Proteínas de Anclaje a la Quinasa A , Potenciales de Acción/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos , Animales , Células CHO , Simulación por Computador , Cricetinae , Cricetulus , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/genética , Canales de Potasio de Tipo Rectificador Tardío , Humanos , Activación del Canal Iónico/fisiología , Canales de Potasio KCNQ , Canal de Potasio KCNQ1 , Cinética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Modelos Cardiovasculares , Mutación Missense , Técnicas de Placa-Clamp , Fosforilación , Mutación Puntual , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Procesamiento Proteico-Postraduccional , Receptores Adrenérgicos beta/fisiología , Proteínas Recombinantes de Fusión/fisiología , Sistemas de Mensajero Secundario/fisiología , Taquicardia/fisiopatología , Transfección
5.
J Biol Chem ; 279(43): 45004-12, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15316014

RESUMEN

Ca2+ has been proposed to regulate Na+ channels through the action of calmodulin (CaM) bound to an IQ motif or through direct binding to a paired EF hand motif in the Nav1 C terminus. Mutations within these sites cause cardiac arrhythmias or autism, but details about how Ca2+ confers sensitivity are poorly understood. Studies on the homologous Cav1.2 channel revealed non-canonical CaM interactions, providing a framework for exploring Na+ channels. In contrast to previous reports, we found that Ca2+ does not bind directly to Na+ channel C termini. Rather, Ca2+ sensitivity appears to be mediated by CaM bound to the C termini in a manner that differs significantly from CaM regulation of Cav1.2. In Nav1.2 or Nav1.5, CaM bound to a localized region containing the IQ motif and did not support the large Ca(2+)-dependent conformational change seen in the Cav1.2.CaM complex. Furthermore, CaM binding to Nav1 C termini lowered Ca2+ binding affinity and cooperativity among the CaM-binding sites compared with CaM alone. Nonetheless, we found suggestive evidence for Ca2+/CaM-dependent effects upon Nav1 channels. The R1902C autism mutation conferred a Ca(2+)-dependent conformational change in Nav1.2 C terminus.CaM complex that was absent in the wild-type complex. In Nav1.5, CaM modulates the Cterminal interaction with the III-IV linker, which has been suggested as necessary to stabilize the inactivation gate, to minimize sustained channel activity during depolarization, and to prevent cardiac arrhythmias that lead to sudden death. Together, these data offer new biochemical evidence for Ca2+/CaM modulation of Na+ channel function.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Canales de Sodio/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Canales de Calcio Tipo L/química , Calmodulina/química , Línea Celular , Cromatografía en Gel , ADN Complementario/metabolismo , Electrofisiología , Escherichia coli/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Sodio/química , Programas Informáticos , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA