Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pathogens ; 12(10)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37887743

RESUMEN

Curcumin (CUR) is known for its wide folkloric effects on various infections; however, its solubility status has remained a hindrance to its bioavailability in the host. This study evaluated the comparative effects of CUR and CUR-nanoparticle in vitro on T. congolense, T. b. brucei, and T. evansi. Additionally, CUR and CUR-nanoparticle anti-Trypanosoma efficacy were assessed in vivo against T. congolense. All the CUR-nanoparticles were two folds more effective on the T. congolense as compared to CUR in vitro, with recorded efficacy of 3.67 ± 0.31; 7.61 ± 1.22; and 6.40 ± 3.07 µM, while the CUR-nanoparticles efficacy was 1.56 ± 0.50; 28.16 ± 9.43 and 13.12 ± 0.13 µM on T. congolense, T. b. brucei, and T. evansi, respectively. Both CUR and CUR-nanoparticles displayed moderate efficacy orally. The efficacy of CUR and CUR-nanoparticles in vivo was influenced by solubility, presence of food, and treatment period. CUR-treated mice were not cured of the infection; however, the survival rate of the orally treated mice was significantly prolonged as compared with intraperitoneal-treated mice. CUR-nanoparticles resulted in significant suppression of parasitemia even though relapsed was observed. In conclusion, CUR and CUR-nanoparticles possess moderate efficacy orally on the trypanosomes as compared to the intraperitoneal treatment.

2.
Parasitol Int ; 97: 102789, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37473798

RESUMEN

Plasmodium falciparum parasites are the primary cause of malaria across Africa. The problem of drug resistance to malaria is ever growing and novel therapeutic strategies need to be developed, particularly those targeting the parasite and also the host or host-pathogen interaction. Previous studies have shown that the development of cerebral malaria (CM) is related to dysregulation of the immune system in a murine malaria model of experimental cerebral malaria. It involves a complex interaction of events and interferon-gamma seems to be the unifying factor. Therefore, the antiplasmodial activity targeting the parasite and immunomodulatory strategies that reduce overall host inflammation, with IFN-γ in focus, could delay CM onset and prove beneficial in malaria infection therapy. Phyllanthus niruri is used to treat fever and other symptoms of malaria in Nigeria. Its modes of action as an anti-malarial remedy have not been exhaustively investigated. This study therefore examined the aqueous extract of P. niruri (PE) for its antiplasmodial activity in vitro using the Plasmodium falciparum HB3 strain. Furthermore, in vivo murine malaria model using the Plasmodium berghei ANKA strain was used to investigate its anti-malarial effects. We showed that PE has multiple anti-malarial effects, including anti-parasitic and host immunomodulatory activities. Co-culture of P. falciparum with PE and some of its phytoconstituents drastically reduced parasite number. PE also decreased parasitemia, and increased the survival of infected mice. We also observed that the integrity of the blood-brain barrier was maintained in the PE-treated mice. The results confirmed that PE showed moderate antiplasmodial activity. In vivo murine malaria model using P. berghei ANKA for experimental cerebral malaria revealed that PE suppressed parasite growth, and modulate the production of interferon-gamma. The findings demonstrate that PE affects malaria progression, targeting parasites and host cells.


Asunto(s)
Antimaláricos , Malaria Cerebral , Malaria Falciparum , Phyllanthus , Ratones , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Cerebral/tratamiento farmacológico , Interferón gamma , Extractos Vegetales/farmacología , Plasmodium falciparum , Nigeria , Plasmodium berghei
3.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36986545

RESUMEN

Currently, toxoplasmosis affects nearly one-third of the world's population, but the available treatments have several limitations. This factor underscores the search for better therapy for toxoplasmosis. Therefore, in the current investigation, we investigated the potential of emodin as a new anti-Toxoplasma gondii while exploring its anti-parasitic mechanism of action. We explored the mechanisms of action of emodin in the presence and absence of an in vitro model of experimental toxoplasmosis. Emodin showed strong anti-T. gondii action with an EC50 value of 0.03 µg/mL; at this same effective anti-parasite concentration, emodin showed no appreciable host cytotoxicity. Likewise, emodin showed a promising anti-T. gondii specificity with a selectivity index (SI) of 276. Pyrimethamine, a standard drug for toxoplasmosis, had an SI of 2.3. The results collectively imply that parasite damage was selective rather than as a result of a broad cytotoxic effect. Furthermore, our data confirm that emodin-induced parasite growth suppression stems from parasite targets and not host targets, and indicate that the anti-parasite action of emodin precludes oxidative stress and ROS production. Emodin likely mediates parasite growth suppression through means other than oxidative stress, ROS production, or mitochondrial toxicity. Collectively, our findings support the potential of emodin as a promising and novel anti-parasitic agent that warrants further investigation.

4.
PLoS Negl Trop Dis ; 16(11): e0010947, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36441814

RESUMEN

Cryptosporidium spp. are gastrointestinal opportunistic protozoan parasites that infect humans, domestic animals, and wild animals all over the world. Cryptosporidiosis is the second leading infectious diarrheal disease in infants less than 5 years old. Cryptosporidiosis is a common zoonotic disease associated with diarrhea in infants and immunocompromised individuals. Consequently, cryptosporidiosis is considered a serious economic, veterinary, and medical concern. The treatment options for cryptosporidiosis are limited. To address this problem, we screened a natural product library containing 87 compounds of Traditional Chinese Medicines for anti-Cryptosporidium compounds that could serve as novel drug leads and therapeutic targets against C. parvum. To examine the anti-Cryptosporidium activity and half-maximal inhibitory doses (EC50) of these compounds, we performed in vitro assays (Cryptosporidium growth inhibition assay and host cell viability assay) and in vivo experiments in mice. In these assays, the C. parvum HNJ-1 strain was used. Four of the 87 compounds (alisol-A, alisol-B, atropine sulfate, and bufotalin) showed strong anti-Cryptosporidium activity in vitro (EC50 values = 122.9±6.7, 79.58±13.8, 253.5±30.3, and 63.43±18.7 nM, respectively), and minimum host cell cytotoxicity (cell survival > 95%). Furthermore, atropine sulfate (200 mg/kg) and bufotalin (0.1 mg/kg) also showed in vivo inhibitory effects. Our findings demonstrate that atropine sulfate and bufotalin are effective against C. parvum infection both in vitro and in vivo. These compounds may, therefore, represent promising novel anti-Cryptosporidium drug leads for future medications against cryptosporidiosis.


Asunto(s)
Cryptosporidium , Medicina Tradicional China , Animales , Preescolar , Humanos , Ratones
5.
J Vet Med Sci ; 82(2): 184-187, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-31904004

RESUMEN

Toxoplasma gondii can cause severe encephalitis in immunocompromised patients. Although pyrimethamine and sulphadiazine have been standard therapeutic agents for the treatment of acute toxoplasmosis, they have toxic side effects. Therefore, there is a need to identify new drugs that are less toxic. Some traditional Chinese medicines (TCMs) have shown good efficacy in controlling T. gondii replication in mouse models. Here, we screened a natural product library comprising TCMs with the aim of identifying compounds and extracts with anti-toxoplasmosis activities. We found several hit compounds and extracts that could be candidates for new drugs against T. gondii infection.


Asunto(s)
Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Toxoplasma/efectos de los fármacos , Animales , Antiprotozoarios/efectos adversos , Antiprotozoarios/farmacología , Línea Celular , Chlorocebus aethiops , Humanos , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/tratamiento farmacológico , Células Vero
6.
Malar J ; 17(1): 244, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29941026

RESUMEN

BACKGROUND: Malaria is a major infectious disease in the world. In 2015, approximately 212 million people were infected and 429,000 people were killed by this disease. Plasmodium falciparum, which causes falciparum malaria, is becoming resistant to artemisinin (ART) in Southeast Asia; therefore, new anti-malarial drugs are urgently needed. Some excellent anti-malarial drugs, such as quinine or ART, were originally obtained from natural plants. Hence, the authors screened a natural product library comprising traditional Chinese medicines (TCMs) to identify compounds/extracts with anti-malarial effects. METHODS: The authors performed three assays: a malaria growth inhibition assay (GIA), a cytotoxicity assay, and a malaria stage-specific GIA. The malaria GIA revealed the anti-malarial ability and half-maximal inhibitory concentrations (IC50) of the natural products, whereas the malaria stage-specific GIA revealed the point in the malaria life cycle where the products exerted their anti-malarial effects. The toxicity of the products to the host cells was evaluated with the cytotoxicity assay. RESULTS: Four natural compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) showed strong anti-malarial effects (IC50 < 50 nM), and low cytotoxicity (cell viability > 90%) using P. falciparum 3D7 strain. Two natural extracts (Phellodendri cortex and Coptidis rhizoma) also showed strong antiplasmodial effects (IC50 < 1 µg/ml), and low cytotoxicity (cell viability > 80%). These natural products also demonstrated anti-malarial capability during the trophozoite and schizont stages of the malaria life cycle. CONCLUSIONS: The authors identified four compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) and two extracts (Phellodendri cortex and Coptidis rhizoma) with anti-malarial activity, neither of which had previously been described. The IC50 values of the compounds were comparable to that of chloroquine and better than that of pyrimethamine. These compounds and extracts derived from TCMs thus show promise as potential future anti-malarial drugs.


Asunto(s)
Antimaláricos/farmacología , Medicina Tradicional China , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Humanos , Malaria Falciparum/prevención & control
7.
J Vet Med Sci ; 73(10): 1377-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21685719

RESUMEN

Bumped kinase inhibitors (BKIs) target analog-sensitive kinases, which the genomes of mammals rarely encode. Previously, we demonstrated that a BKI effectively suppressed the in vitro replication of Toxoplasma gondii, the causative pathogen of toxoplasmosis, by targeting T. gondii calcium-dependent protein kinase 1 (TgCDPK1) (Eukaryotic Cell, 9: 667-670). Here, we examined whether the BKI 1NM-PP1 reduced parasite replication in vivo. A high dose of 1NM-PP1, by intraperitoneal injection, just before the parasite inoculation effectively reduced the parasite load in the brains, livers, and lungs of T. gondii-infected mice, however, a low dose of 1NM-PP1 with oral administration didn't change the survival rates of infected mice.


Asunto(s)
Antiprotozoarios/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Toxoplasmosis/tratamiento farmacológico , Administración Oral , Animales , Encéfalo/parasitología , Relación Dosis-Respuesta a Droga , Femenino , Inyecciones Intraperitoneales , Hígado/parasitología , Pulmón/parasitología , Ratones , Ratones Endogámicos ICR , Carga de Parásitos , Tasa de Supervivencia , Toxoplasmosis/mortalidad , Toxoplasmosis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA