Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gene ; 895: 148001, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977314

RESUMEN

Demand for maize oil is progressively increasing due to its diverse industrial applications, aside from its primary role in human nutrition and animal feed. Oil content and composition are two crucial determinants of maize oil in the international market. As kernel oil in maize is a complex quantitative trait, improving this trait presents a challenge for plant breeders and biotechnologists. Here, we characterized a set of 292 diverse maize inbreds of both indigenous and exotic origin by exploiting functional polymorphism of the dgat1-2, fatb, ge2, and wri1a genes governing kernel oil in maize. Genotyping using gene-based functional markers revealed a lower frequencies of dgat1-2 (0.15) and fatb (0.12) mutant alleles and a higher frequencies of wild-type alleles (Dgat1-2: 0.85; fatB: 0.88). The favorable wri1a allele was conserved across genotypes, while its wild-type allele (WRI1a) was not detected. In contrast, none of the genotypes possessed the ge2 favorable allele. The frequency of favorable alleles of both dgat1-2 and fatb decreased to 0.03 when considered together. Furthermore, pairwise protein-protein interactions among target gene products were conducted to understand the effect of one protein on another and their responses to kernel oil through functional enrichments. Thus, the identified maize genotypes with dgat1-2, fatb, and wri1a favourable alleles, along with insights gained through the protein-protein association network, serve as prominent and unique genetic resources for high-oil maize breeding programs. This is the first comprehensive report on the functional characterization of diverse genotypes at the molecular and protein levels.


Asunto(s)
Aceite de Maíz , Zea mays , Humanos , Zea mays/genética , Zea mays/metabolismo , Aceite de Maíz/genética , Aceite de Maíz/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Fitomejoramiento , Marcadores Genéticos , Alelos
2.
Front Nutr ; 9: 845255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600823

RESUMEN

Edible oil with lower saturated fatty acids is desired for perceived quality and health benefits to humans and livestock. fatb gene encoding acyl-ACP thioesterase is a key player in the conversion of palmitic acid to oleic acid, thereby modifying the ratio of saturated to unsaturated fatty acids in maize kernels. The present investigation characterised the full-length sequence of the Zmfatb gene (4.63 kb) in two mutants (Zmfatb) and eight wild-types (ZmfatB) inbreds to study allelic variation, gene-based diversity, phylogenetic-relationship, protein-modelling, and molecular-docking to identify novel candidates for modification of fatty acid profile. Sequence alignment revealed wide genomic variability for Zmfatb among the inbreds; identified five novel SNPs and two InDels that clearly differentiated the wild-type and mutant genotypes. Gene-based diversity using 11-InDel markers categorised 48-diverse maize-inbreds into two-clusters. The majority of mutant and wild-type inbreds were grouped in separate clusters and led to the generation of 41 haplotypes. Genetic relationship of maize fatb gene with orthologues among 40 accessions of 12 oilseed-crops using both nucleotide and protein sequence clustered maize, soybean, sunflower, opium-poppy, Citrulus lanata, quinoa, and prunus species into one cluster; and brassica, camelina, and arabidopsis into the different cluster. The clustering pattern revealed that the plant oil with higher unsaturated fatty acids, particularly oleic, linoleic, and linolenic acids grouped together in one cluster and higher proportions of other fractions like arachidic, eicosenoic, and erucic acids grouped in another cluster. Physico-chemical properties highlighted more similarity between maize and 29 orthologue proteins, but orthologues were found to have better thermostability. Homology models have been developed for maize mutant and wild-type inbreds using Umbellularia californica (PDB ID: 5x04) as a template. Predicted protein models possessed optimum confidence-score and RMSD values and validated stability via., Ramachandran plots. Molecular docking indicated most of the interactions of protein-ligand were having similar binding-affinity due to the broader specificity of fatty acyl-ACP thioesterases and the presence of conserved-domains across crops. This is the first report on the comprehensive molecular characterisation of the fatb gene in maize and various orthologues. The information generated here provided new insights into the genetic diversity of fatb gene which can be utilised for the enhanced nutritive value of oil in the breeding programme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA