Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Tissue Eng Regen Med ; 12(3): 727-737, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28603879

RESUMEN

Nanocomposite scaffolds show extensive applications in regenerative medicine and have shown promise as in vitro analogues of human tissue that can be used for the study of diseases. The complex nature of cancer metastasis is recently investigated using several 3D scaffold models. Herein, we report a polymer-nanoclay-based in vitro tumour model that recapitulates early stage of prostate cancer (PCa) colonization during skeletal metastasis on bone mimetic scaffolds. A unique cell culture system termed as "sequential culture (SC)" has been applied to create a bone-mimetic niche for colonization of PCa cells. Human mesenchymal stem cells (MSCs) were seeded on the bone-mimetic scaffolds, where they differentiated into bone cells and then formed mineralized bone matrix without osteogenic supplements. Further, PCa was seeded on MSCs-seeded scaffolds. Sequentially cultured PCa cells with MSCs formed self-organized multicellular tumoroids with distinct tight cellular junctions and hypoxic core regions. Extensive quantitative reverse transcription-polymerase chain reaction experiments were performed to evaluate the expressions of genes related to osteotropic bone metastasis of PCa. On the nanoclay scaffolds, the MSCs differentiated to mature osteoblasts and epithelial to mesenchymal transition was inhibited whereas mesenchymal to epithelial transition was enhanced, as also the hypoxia increased angiogenesis, and finally, PCa cells initiated osteoblastic lesion. Further, the SC technique has significant effects on expression of key metastasis-related genes. Therefore, the SC-based tumour model can be applied to recapitulate more consistent osteotropic cancer cell behavior in understanding tumour biology. This model also can be implemented for drug screening to target colonization stage of PCa cells in the bone microenvironment.


Asunto(s)
Materiales Biomiméticos/química , Arcilla/química , Transición Epitelial-Mesenquimal , Nanopartículas/química , Neoplasias de la Próstata/patología , Andamios del Tejido/química , Diferenciación Celular , Hipoxia de la Célula/genética , Línea Celular Tumoral , Forma de la Célula , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/ultraestructura , Nanopartículas/ultraestructura , Metástasis de la Neoplasia , Neovascularización Patológica/genética , Osteoblastos/metabolismo , Osteogénesis , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/irrigación sanguínea , Neoplasias de la Próstata/ultraestructura , Esferoides Celulares/patología , Esferoides Celulares/ultraestructura
2.
J Biomed Mater Res A ; 103(6): 2077-101, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25331212

RESUMEN

Nanoclay modified with unnatural amino acid was used to design a nanoclay-hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to study interactions between human mesenchymal stem cells (hMSCs) and PCL/in situ HAPclay composites (films and scaffolds). SEM imaging indicated MSC attachment, formation of mineralized extracellular (ECM) on PCL/in situ HAPclay films, and infiltration of MSCs to the interior of PCL/in situ HAPclay scaffolds. Mineralized ECM was formed by MSCs without use of osteogenic supplements. AFM imaging performed on this in vitro generated mineralized ECM on PCL/in situ HAPclay films revealed presence of components (collagen and mineral) of hierarchical organization reminiscent of natural bone. Cellular events observed during two-stage seeding experiments on PCL/in situ HAPclay films indicated similarities with events occurring during in vivo bone formation. PCL/in situ HAPclay films showed significantly increased (100-595% increase in elastic moduli) nanomechanical properties and PCL/in situ HAPclay scaffolds showed increased degradation. This work puts forth PCL/in situ HAPclay composites as viable biomaterials for bone tissue engineering.


Asunto(s)
Huesos/fisiología , Calcificación Fisiológica/efectos de los fármacos , Durapatita/farmacología , Células Madre Mesenquimatosas/citología , Nanopartículas/química , Poliésteres/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Silicatos de Aluminio/farmacología , Huesos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Arcilla , Fuerza Compresiva/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/ultraestructura , Nanopartículas/ultraestructura , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Coloración y Etiquetado
3.
J Biomed Mater Res A ; 101(9): 2644-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23413041

RESUMEN

In this work, novel modified nanoclays were used to mineralize hydroxyapatite (HAP) mimicking biomineralization in bone. This in situ HAPclay was further incorporated into chitosan/polygalacturonic acid (Chi/PgA) scaffolds and films for bone tissue engineering. Differences in microstructure of the scaffolds were observed depending on the changes in processing of in situ HAPclay with ChiPgA biopolymer system. Response of human mesenchymal stem cells (hMSCs) on these scaffolds and films was studied using imaging and assays. SEM micrographs indicate that hMSCs were able to adhere to ChiPgA/in situ HAPclay scaffolds and phase contrast images indicated formation of mineralized nodules on ChiPgA/in situ HAPclay films in absence of osteogenic supplements used for differentiation of hMSCs. The formation of mineralized nodules by hMSCs was confirmed by positive staining of the nodules by Alizarin Red S dye. Viability and differentiation assays showed that ChiPgA/in situ HAPclay scaffolds were favorable for viability and differentiation of hMSCs. Unique two-stage cell seeding experiments were performed as a strategy to enhance tissue formation by hMSCs on ChiPgA/in situ HAPclay composite films. This work showed that biomaterials based on ChiPgA/in situ HAPclay composites can be used for bone tissue engineering applications and in situ nanoclay-HAP system mediates osteoinductive and osteoconductive response from hMSCs.


Asunto(s)
Bentonita/química , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Nanoestructuras/química , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Materiales Biocompatibles/química , Materiales Biomiméticos/química , Biopolímeros/química , Diferenciación Celular , Células Cultivadas , Quitosano/química , Durapatita/metabolismo , Humanos , Ensayo de Materiales , Minerales/metabolismo , Nanoestructuras/ultraestructura , Osteogénesis , Pectinas/química
4.
Acta Biomater ; 7(3): 1173-83, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21034863

RESUMEN

The ultimate goal of bone tissue engineering is to develop bony tissues on tissue engineered constructs that mimic the native bone. Nanoscale characterization of in vitro generated bony tissues on engineered scaffolds is essential to understanding both the physical and mechanical characteristics of the engineered bone. Bone nodule formation, a typical early indicator of bone formation was observed on chitosan-polygalacturonic acid-hydroxyapatite (Chi-PgA-HAP) nanocomposite films without the use of differentiating media. Thus, the Chi-PgA-HAP substrates designed are osteoinductive and provide an appropriate microenvironment for cell organization and tissue regeneration. Imaging using atomic force microscopy revealed several levels of hierarchical structures of bone in the bone nodules, consisting of mineralized collagen fibers, fibrils and mineral deposits in extrafibrillar spaces. The nanoscale elastic properties of the collagen and mineral crystals were found to be in close agreement with the experimental and simulations results on natural bone reported in the literature. Fourier transform infrared spectroscopy experiments indicate the presence of collagen and biological apatite in bone nodules exhibiting the characteristics of newly precipitated, immature bone. Collectively, our structural, chemical, and mechanical analyses support the conclusion that synthetic bone nodules mimic the hierarchy of natural bone.


Asunto(s)
Huesos/patología , Quitosano/química , Durapatita/química , Nanocompuestos , Pectinas/química , Microscopía de Fuerza Atómica , Osteoblastos/citología , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos
5.
Philos Trans A Math Phys Eng Sci ; 368(1917): 1963-80, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20308111

RESUMEN

Sodium montmorillonite (Na-MMT) clay was modified with three different unnatural amino acids in order to design intercalated clay structures that may be used for bone biomaterials applications. Prior work on polymer-clay nanocomposites (PCNs) has indicated the effect of the appropriate choice of modifiers on enhancing properties of PCNs. Our X-ray diffraction results indicate an increase in the d-spacing of Na-MMT clay after it was modified with the three unnatural amino acids. Transmission Fourier transform infrared spectroscopy experiments were carried out on the unmodified and modified MMT clay samples to study the molecular interactions between the amino acids used as modifiers and the Na-MMT clay. Cell culture experiments showed that the Na-MMT clay modified with the three amino acids was biocompatible as were the modified clay-incorporated films of chitosan/polygalacturonic acid/hydroxyapatite.


Asunto(s)
Silicatos de Aluminio , Aminoácidos/química , Materiales Biocompatibles/química , Nanoestructuras/química , Bentonita/química , Técnicas de Cultivo de Célula/métodos , Quitosano/química , Arcilla , Durapatita/química , Humanos , Ensayo de Materiales , Nanocompuestos/química , Osteoblastos/metabolismo , Pectinas/química , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
6.
Philos Trans A Math Phys Eng Sci ; 368(1917): 2083-97, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20308116

RESUMEN

In this work, we have investigated osteoblast adhesion, proliferation and differentiation on nanocomposites of chitosan, polygalacturonic acid (PgA) and hydroxyapatite. These studies were done on both two- and three-dimensional (scaffold) samples. Atomic force microscopy experiments showed nanostructuring of film samples. Scaffolds were prepared by freeze-drying methods. The mechanical response and porosity of the scaffolds were also determined. The compressive elastic modulus and compressive strength were determined to be around 0.9 and 0.023 MPa, respectively, and the porosity of these scaffolds was found to be around 97 per cent. Human osteoblast cells were used to study their adhesion, proliferation and differentiation. Optical images were collected after different intervals of time of seeding cells. This study indicated that chitosan/PgA/hydroxyapatite nanocomposite films and scaffolds promote cellular adhesion, proliferation and differentiation. The formation of bone-like nodules was observed after 7 days of seeding cells. The nodule size continues to increase with time, and after 20 days the size of some nodules was around 735 microm. Scanning electron microscope images of nodules showed the presence of extracellular matrix. The alizarin red S staining technique was used to confirm mineralization of these nodules.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Durapatita/química , Nanocompuestos/química , Osteoblastos/citología , Materiales Biocompatibles/química , Huesos/metabolismo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Elasticidad , Electrólitos , Humanos , Nanotecnología/métodos , Pectinas/química , Presión , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA