Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Breast Cancer Res Treat ; 203(1): 29-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37726449

RESUMEN

PURPOSE: This research focused on the identification of herbal compounds as potential anti-cancer drugs, especially for breast cancer, that involved the recognition of Notch downstream targets NOTCH proteins (1-4) specifically expressed in breast tumours as biomarkers for prognosis, along with P53 tumour antigens, that were used as comparisons to check the sensitivity of the herbal bio-compounds. METHODS: After investigating phytochemical candidates, we employed an approach for computer-aided drug design and analysis to find strong breast cancer inhibitors. The present study utilized in silico analyses and protein docking techniques to characterize and rank selected bio-compounds for their efficiency in oncogenic inhibition for use in precise carcinomic cell growth control. RESULTS: Several of the identified phytocompounds found in herbs followed Lipinski's Rule of Five and could be further investigated as potential medicinal molecules. Based on the Vina score obtained after the docking process, the active compound Epigallocatechin gallate in green tea with NOTCH (1-4) and P53 proteins showed promising results for future drug repurposing. The stiffness and binding stability of green tea pharmacological complexes were further elucidated by the molecular dynamic simulations carried out for the highest scoring phytochemical ligand complex. CONCLUSION: The target-ligand complex of green tea active compound Epigallocatechin gallate with NOTCH (1-4) had the potential to become potent anti-breast cancer therapeutic candidates following further research involving wet-lab experiments.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Simulación del Acoplamiento Molecular , Ligandos , Proteína p53 Supresora de Tumor/genética , Té/química , Biomarcadores , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
2.
Microb Cell Fact ; 22(1): 106, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268947

RESUMEN

Biofloc technology aims to maximize fish farming productivity by effectively breaking down ammonia and nitrite, promoting healthy flocculation, and enhancing the growth and immunity of cultured animals. However, a major limitation in this field is the suitable starter microbial culture and narrow number of fish species that have been tested with the biofloc system. Here, we investigated various microbial inoculum containing beneficial microbes with probiotics, immunostimulatory and flocs development and bioremediation properties would lead to the development of ideal biofloc development. Three treatment groups with different microbial combinations, viz., group 1 [Bacillus subtilis (AN1) + Pseudomonas putida (PB3) + Saccharomyces cerevisiae (ATCC-2601)], group 2 [B. subtilis (AN2) + P. fluorescens (PC3) + S. cerevisiae (ATCC-2601)] and group 3 [B. subtilis (AN3) + P. aeruginosa (PA2) + S. cerevisiae (ATCC-2601)] were used and compared with the positive control (pond water without microbial inoculums) and negative control (clear water: without microbial inoculums and carbon sources) on biofloc development and its characteristic features to improve the water quality and growth of fish. We demonstrated that microbial inoculums, especially group 2, significantly improve the water quality and microbiota of flocs and gut of the test animal, Heteropneustes fossilis. The study further demonstrates that biofloc system supplemented with microbial inoculums positively regulates gut histomorphology and growth performance, as evidenced by improved villous morphology, amylase, protease and lipase activity, weight gain, FCR, T3, T4 and IGF1 levels. The inoculums induced an antioxidative response marked by significantly higher values of catalase (CAT) and superoxide dismutase (SOD) activity. Furthermore, the supplementation of microbial inoculums enhances both specific and non-specific immune responses and significantly elevated levels of immune genes (transferrin, interleukin-1ß and C3), and IgM was recorded. This study provides a proof-of-concept approach for assessing microbial inoculums on fish species that can be further utilized to develop biofloc technology for use in sustainable aquaculture.


Asunto(s)
Bagres , Saccharomyces cerevisiae , Animales , Suplementos Dietéticos , Inmunidad Innata , Acuicultura
3.
Plant Cell Environ ; 42(6): 1987-2002, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30734927

RESUMEN

Crops with improved uptake of fertilizer phosphorus (P) would reduce P losses and confer environmental benefits. We examined how P-sufficient 6-week-old soil-grown Trifolium subterraneum plants, and 2-week-old seedlings in solution culture, accumulated P in roots after inorganic P (Pi) addition. In contrast to our expectation that vacuoles would accumulate excess P, after 7 days, X-ray microanalysis showed that vacuolar [P] remained low (<12 mmol kg-1 ). However, in the plants after P addition, some cortex cells contained globular structures extraordinarily rich in P (often >3,000 mmol kg-1 ), potassium, magnesium, and sodium. Similar structures were evident in seedlings, both before and after P addition, with their [P] increasing threefold after P addition. Nuclear magnetic resonance (NMR) spectroscopy showed seedling roots accumulated Pi following P addition, and transmission electron microscopy (TEM) revealed large plastids. For seedlings, we demonstrated that roots differentially expressed genes after P addition using RNAseq mapped to the T. subterraneum reference genome assembly and transcriptome profiles. Among the most up-regulated genes after 4 hr was TSub_g9430.t1, which is similar to plastid envelope Pi transporters (PHT4;1, PHT4;4): expression of vacuolar Pi-transporter homologs did not change. We suggest that subcellular P accumulation in globular structures, which may include plastids, aids cytosolic Pi homeostasis under high-P availability.


Asunto(s)
Fósforo/metabolismo , Raíces de Plantas/metabolismo , Plastidios/metabolismo , Plantones/metabolismo , Trifolium/metabolismo , Transporte Biológico , Fertilizantes , Regulación de la Expresión Génica de las Plantas , Homeostasis , Magnesio/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Potasio/metabolismo , Plantones/citología , Sodio/metabolismo , Suelo/química , Transcriptoma , Trifolium/genética , Trifolium/crecimiento & desarrollo , Vacuolas/metabolismo
4.
Ann Bot ; 122(4): 627-640, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-29893784

RESUMEN

Background and Aims: Resistance to synthetic auxin herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) is increasing in weed populations worldwide, which is of concern given the recent introduction of synthetic auxin-resistant transgenic crops. Due to the complex mode of action of the auxinic herbicides, the mechanisms of evolved resistance remain largely uncharacterized. The aims of this study were to assess the level of diversity in resistance mechanisms in 11 populations of the problem weed Raphanus raphanistrum, and to use a high-throughput, whole-genome transcriptomic analysis on one resistant and one susceptible population to identify important changes in gene expression in response to 2,4-D. Methods: Levels of 2,4-D and dicamba (3,6-dichloro-2-methoxybenzoic acid) resistance were quantified in a dose-response study and the populations were further screened for auxin selectivity, 2,4-D translocation and metabolism, expression of key 2,4-D-responsive genes and activation of the mitogen-activated proein kinase (MAPK) pathway. Potential links between resistance levels and mechanisms were assessed using correlation analysis. Key Results: The transcriptomic study revealed early deployment of the plant defence response in the 2,4-D-treated resistant population, and there was a corresponding positive relationship between auxinic herbicide resistance and constitutive MAPK phosphorylation across all populations. Populations with shoot-wide translocation of 2,4-D had similar resistance levels to those with restricted translocation, suggesting that reduced translocation may not be as strong a resistance mechanism as originally thought. Differences in auxin selectivity between populations point to the likelihood of different resistance-conferring alterations in auxin signalling and/or perception in the different populations. Conclusions: 2,4-D resistance in wild radish appears to result from subtly different auxin signalling alterations in different populations, supplemented by an enhanced defence response and, in some cases, reduced 2,4-D translocation. This study highlights the dangers of applying knowledge generated from a few populations of a weed species to the species as a whole.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas/farmacología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raphanus/fisiología , Transducción de Señal , Ácido 2,4-Diclorofenoxiacético/farmacología , Dicamba/farmacología , Raphanus/efectos de los fármacos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA