Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Anim Sci ; 100(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772767

RESUMEN

Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.


Heat stress (HS) deleteriously affects multiple components of porcine reproduction and causes seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. We evaluated the abundance of HSP90, HSP70, HSP60 and HSPB in the porcine endometrium during the peri-implantation period. We demonstrate how a physiological event such as pregnancy and an environmental stressor such as HS, individually and in combination, alter the endometrial abundance of these HSP. Moreover, supplementation of pregnant gilts subjected to HS with ALT also altered the abundance of these HSP in the porcine endometrium.


Asunto(s)
Proteínas de Choque Térmico , Respuesta al Choque Térmico , Animales , Suplementos Dietéticos , Endometrio/metabolismo , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Embarazo , Sus scrofa/metabolismo , Porcinos , Acetato de Trembolona/análogos & derivados
2.
J Anim Sci ; 99(9)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34402900

RESUMEN

Porcine pregnancy establishment and maintenance are dependent on the formation of functional corpora lutea (CL). Manganese (Mn) is critical for CL function as it is a cofactor for Mn superoxide dismutase and enzymes involved in cholesterol synthesis. Previously, we have shown that luteal Mn content increased and luteal progesterone (P4) concentration decreased in the CL of gilts fed diets supplemented with an Mn-amino acid complex (Availa-Mn; Zinpro Corporation) compared with controls fed Mn sulfate. Importantly, serum P4 increased from 0 (estrus onset) to 12 d post estrus (dpe), as expected, but P4 abundance in circulation was not affected by dietary Mn source (P = 0.15). We hypothesized that a more bioavailable Mn source (which results in increased luteal Mn content) would alter the luteal proteome and abundance of mRNA associated with steroid biogenesis during the mid-luteal phase of the estrous cycle. Postpubertal gilts (n = 32) were assigned to one of the four gestation diets. The control diet (CON) contained 20 ppm of supplemental Mn in the form of Mn sulfate. Three additional diets included 20 (TRT1), 40 (TRT2), or 60 (TRT3) ppm of supplemental Mn in the form of a Mn-amino acid complex instead of Mn sulfate. Dietary treatment began at estrus synchronization (approximately 20 d before estrus) and continued through 12 dpe when gilts were euthanized and tissues were collected. Protein and total RNA extracts from the CL were used for proteomic analysis via label-free liquid chromatography with tandem mass spectrometry to assess global protein abundance and quantitative real-time polymerase chain reaction (qRT-PCR) to assess specific mRNA abundance, respectively. Compared with CON, 188, 382, and 401 proteins were differentially abundant (P < 0.10) in TRT1, TRT2, and TRT3, respectively. Gene Ontology enrichment software revealed that proteins involved in P4 signaling and cholesterol synthesis were downregulated in CL of gilts fed Mn-amino acid complex compared with controls. Quantitative RT-PCR showed that relative transcript abundance of genes encoding steroidogenic enzymes (CYP11A1 and StAR) in CL tissue was decreased in gilts from TRT2 compared with CON (P = 0.02), but TRT1 and TRT3 were not affected (P ≥ 0.30). Collectively, these data support our hypothesis that a more bioavailable dietary Mn source may influence luteal function by altering the abundance of protein and mRNA involved in steroidogenesis.


Asunto(s)
Manganeso , Proteómica , Aminoácidos , Animales , Cuerpo Lúteo , Suplementos Dietéticos , Femenino , Embarazo , Progesterona , Porcinos
3.
J Anim Sci ; 97(9): 3626-3635, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31505650

RESUMEN

Arginine (Arg) is an important amino acid of pig fetal development; however, whether Arg improves postnatal performance is ill-defined. Therefore, the influence of Arg supplementation at different gestational stages on offspring performance was evaluated in a commercial swine herd. Sows (n = 548) were allocated into 4, diet by stage of gestation treatments: Control (n = 143; 0% suppl. Arg), or dietary treatments supplemented with 1% L-Arg (free-base; Ajinomoto Animal Nutrition North America, Inc., Chicago, IL): from 15 to 45 d of gestation (n = 138; Early-Arg); 15 d of gestation to farrowing (n = 139; Full-Arg); and from day 85 of gestation to farrowing (n = 128; Late-Arg). All offspring were individually identified and weighed at birth; at weaning, a subset was selected for evaluation of carcass performance at market. All data were analyzed using birth weight (BiWt) and age as covariates. Wean weights (WW) and prewean (PW) ADG tended to increase (P = 0.06) in progeny from sows supplemented with Arg, as compared to progeny from Control sows. Preplanned contrast comparisons revealed an increased (P = 0.03) BiWt for pigs from sows receiving 1% L-Arg prior to day 45 of gestation (Early-Arg and Full-Arg; 1.38 kg/pig), as compared to pigs from sows not supplemented prior to day 45 of gestation (Control and Late-Arg; 1.34 kg/pig). No difference in BiWt was observed (1.36 kg/pig; P = 0.68) for Arg supplementation after day 85 of gestation (Full-Arg and Late-Arg), as compared to those not receiving Arg supplementation after day 85 (Control and Early-Arg); although WW and PW ADG were greater (P = 0.02), respectively. A 3.6% decrease (P = 0.05) in peak lean accretion ADG occurred when dams received 1% L-Arg prior to day 45 of gestation (Early-Arg and Full-Arg), however, no other significant differences were detected in finishing growth parameters or carcass characteristics (P ≥ 0.1). Pig mortality rates tended (P = 0.07) to decrease in progeny of dams supplemented Arg after day 85 (3.6%) compared to dams not provided additional Arg during late gestation (4.9%). Collectively, these data suggest that Arg provided during late gestation may improve WW and PW ADG, however, finishing performance was not affected. While Arg supplementation provided some moderate production benefits, further investigation is warranted to comprehensively understand the gestational timing and biological role of Arg supplementation during fetal and postnatal development in commercial production systems.


Asunto(s)
Arginina/farmacología , Suplementos Dietéticos , Porcinos/fisiología , Animales , Peso al Nacer/efectos de los fármacos , Dieta/veterinaria , Femenino , Parto/efectos de los fármacos , Embarazo , Destete
4.
J Anim Sci ; 97(9): 3617-3625, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31298271

RESUMEN

Supplemental arginine (Arg) during gestation purportedly benefits fetal development. However, the benefits of a gestational Arg dietary strategy in commercial production are unclear. Therefore, the objectives of this study examined Arg supplementation during different gestational stages and the effects on gilt reproductive performance. Pubertal gilts (n = 548) were allocated into 4 treatment groups: Control (n = 143; 0% supplemental Arg) or 1 of 3 supplemental Arg (1% as fed) treatments: from 15 to 45 d of gestation (n = 138; Early-Arg); from 15 d of gestation until farrowing (n = 139; Full-Arg); or from 85 d of gestation until farrowing (n = 128; Late-Arg). At farrowing, the number of total born (TB), born alive (BA), stillborn piglets (SB), mummified fetuses (MM), and individual piglet birth weights (BiWt) were recorded. The wean-to-estrus interval (WEI) and subsequent sow reproductive performance (to third parity) were also monitored. No significant effect of supplemental Arg during any part of P0 gestation was observed for TB, BA, SB, or MM (P ≥ 0.29). Offspring BiWt and variation among individual piglet birth weights did not differ (P = 0.42 and 0.89, respectively) among treatment groups. Following weaning, the WEI was similar among treatments (average of 8.0 ± 0.8 d; P = 0.88). Litter performance over 3 parities revealed a decrease (P = 0.02) in BA for Early-Arg fed gilts compared with all other treatments, whereas TB and WEI were similar among treatments over 3 parities (P > 0.05). There was an increased proportion of sows with average size litters (12 to 16 TB) from the Full-Arg treatment sows (76.8% ± 3.7%) when compared with Control (58.7% ± 4.2%; P = 0.01); however, the proportion of sows with high (>16 TB) and low (<12 TB) litters was not different among treatments (P = 0.20). These results suggest that gestational Arg supplementation had a minimal impact on reproductive performance in first parity sows. These data underscore the complexity of AA supplementation and the need for continued research into understanding how and when utilizing a gestational dietary Arg strategy can optimize fetal development and sow performance.


Asunto(s)
Arginina/farmacología , Suplementos Dietéticos , Reproducción , Porcinos/fisiología , Animales , Peso al Nacer/efectos de los fármacos , Dieta/veterinaria , Estro/efectos de los fármacos , Femenino , Tamaño de la Camada/efectos de los fármacos , Paridad/efectos de los fármacos , Parto/efectos de los fármacos , Embarazo , Destete
5.
J Anim Sci ; 96(10): 4173-4185, 2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30256966

RESUMEN

Study objectives were to determine the effects of zinc (Zn) amino acid complex (Availa Zn, Zinpro Corporation, Eden Prairie, MN) on metabolism, biomarkers of leaky gut, and inflammation during and following heat stress (HS) and nutrient restriction. Crossbred gilts (n = 50; 50 ± 2 kg BW) were blocked by initial BW and randomly assigned to one of five treatments: 1) thermoneutral (TN) and ad libitum fed a control diet (TNCtl), 2) TN and pair-fed a control diet (PFCtl), 3) TN and pair-fed a Zn-supplemented diet (PFZn), 4) HS and ad libitum fed a control diet (HSCtl), and 5) HS and ad libitum fed a Zn-supplemented diet (HSZn). The study consisted of 3 experimental periods (P): during P1 (7 d), all pigs were fed their respective diets ad libitum and housed in TN conditions (20.84 ± 0.03 °C, 47.11 ± 0.42% relative humidity). During P2 (7 d), HSCtl and HSZn pigs were exposed to progressive cyclical HS conditions (27 to 30 °C, 41.9 ± 0.5% relative humidity), while TNCtl, PFCtl, and PFZn pigs remained in TN conditions and were fed ad libitum or pair-fed to their respective HSCtl and HSZn counterparts. During P3 (5 d; "recovery phase"), all pigs were housed in TN conditions and fed ad libitum. Pigs exposed to HS had overall increased rectal temperature, skin temperature, and respiration rate (0.33 °C, 3.76 °C, and 27 bpm, respectively; P < 0.01). Relative to TN controls, HS decreased ADFI and ADG (28 and 35%, respectively; P < 0.05), but these variables were unaffected by dietary treatment. Additionally, circulating insulin did not differ between HS and TN pigs (P = 0.41), but was decreased in PF relative to TN pigs (P < 0.01). During recovery, no differences were observed in rectal temperature or respiration rate across treatments, but HSZn pigs had decreased skin temperature relative to TN, PF, and HSCtl pigs (P < 0.01). During P3, no Zn effects were observed in production parameters; however, PF pigs had increased ADFI and ADG relative to TN and HS treatments (P < 0.01). During P3, circulating insulin was increased in pigs that were HS relative to TN and PF pigs (75%, P < 0.05). Interestingly, tumor necrosis factor alpha (TNFα) levels were decreased during P3 (P = 0.04) in Zn relative to Ctl-fed pigs. Circulating lipopolysaccharide-binding protein was not different among periods (P > 0.10). In summary, Zn reduced TNFα (regardless of HS), and the stimulatory effect of HS on insulin secretion is amplified during HS recovery.


Asunto(s)
Aminoácidos/farmacología , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Ingestión de Alimentos , Porcinos/fisiología , Zinc/farmacología , Animales , Biomarcadores/metabolismo , Temperatura Corporal , Dieta/veterinaria , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Respuesta al Choque Térmico , Calor , Insulina/sangre , Frecuencia Respiratoria , Porcinos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA