Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
2.
Poult Sci ; 101(5): 101762, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35278757

RESUMEN

Methionine (Met) is the first limiting amino acid in corn and soybean meal-based diets (containing L-Met) in broiler chickens, which are often supplemented with synthetic DL-Met or DL-Hydroxy Met (OH-Met). Our objective was to quantitatively assess the efficacy of synthetic Met sources and determine differences in growth rate of broilers fed at or below requirements in response to Met intake. A systematic literature search resulted in building a database containing 480 treatment means from 39 articles published between 1985 and 2019 globally. The database was divided into starter, grower, and finisher subsets based on the age of the broilers. For each subset, linear-plateau and quadratic-plateau models were fitted to determine Met or sulfur amino acid (SAA; Met + Cysteine) requirements using average daily gain as a response variable. For each phase, 4 new subsets were obtained by only retaining records with digestible Met or SAA intake at or below requirement by linear-plateau or quadratic-plateau models. Then, a linear model (without plateau) was fitted for all new subsets for each rearing phase using supplemental digestible synthetic Met or SAA intake (basal Met intake was subtracted from total Met intake) as independent variables. The basal diet was made of only raw materials without supplementation of any synthetic Met source. Finally, the models were extended to evaluate source of synthetic Met effects on the slope parameter. At all stages of model fitting, the inclusion of a random study effect was evaluated for each parameter. All models were fitted within a Bayesian framework, for which minimally informative priors were used. The best models, that is, the most accurate inclusion of random effects, were selected based on at least 10-point difference in leave-one-out cross-validation information criterion. Model selection criteria did not consistently favor either of the linear- and quadratic-plateau models to determine Met or SAA requirements across broiler growth phases. Extending models with covariates (e.g., dietary energy and amino acids) did not improve any model fit. Body weight gain response of broiler chickens to the 2 sources was not different when fed at or below Met requirements for any of the growth phases.


Asunto(s)
Alimentación Animal , Pollos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Teorema de Bayes , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Metionina , Racemetionina/metabolismo
3.
PLoS One ; 16(3): e0247820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33730064

RESUMEN

The red macroalgae (seaweed) Asparagopsis spp. has shown to reduce ruminant enteric methane (CH4) production up to 99% in vitro. The objective of this study was to determine the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g CH4/kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADG/kg DMI), and carcass and meat quality in growing beef steers. Twenty-one Angus-Hereford beef steers were randomly allocated to one of three treatment groups: 0% (Control), 0.25% (Low), and 0.5% (High) A. taxiformis inclusion based on organic matter intake. Steers were fed 3 diets: high, medium, and low forage total mixed ration (TMR) representing life-stage diets of growing beef steers. The Low and High treatments over 147 days reduced enteric CH4 yield 45 and 68%, respectively. However, there was an interaction between TMR type and the magnitude of CH4 yield reduction. Supplementing low forage TMR reduced CH4 yield 69.8% (P <0.01) for Low and 80% (P <0.01) for High treatments. Hydrogen (H2) yield (g H2/DMI) increased (P <0.01) 336 and 590% compared to Control for the Low and High treatments, respectively. Carbon dioxide (CO2) yield (g CO2/DMI) increased 13.7% between Control and High treatments (P = 0.03). No differences were found in ADG, carcass quality, strip loin proximate analysis and shear force, or consumer taste preferences. DMI tended to decrease 8% (P = 0.08) in the Low treatment and DMI decreased 14% (P <0.01) in the High treatment. Conversely, FCE tended to increase 7% in Low (P = 0.06) and increased 14% in High (P <0.01) treatment compared to Control. The persistent reduction of CH4 by A. taxiformis supplementation suggests that this is a viable feed additive to significantly decrease the carbon footprint of ruminant livestock and potentially increase production efficiency.


Asunto(s)
Alimentación Animal , Dieta/veterinaria , Suplementos Dietéticos , Carne , Metano/metabolismo , Rhodophyta/metabolismo , Animales , Bovinos , Masculino , Algas Marinas/metabolismo , Estómago de Rumiantes/metabolismo
4.
J Anim Sci ; 97(6): 2515-2523, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31004130

RESUMEN

The aim of this study was to determine the effects of dietary grape seed polyphenols (GSP) supplementation during the late gestation and lactation period on reproductive performance, antioxidative status in serum, nutrient composition, and Ig content in colostrum of multiparous sows. On day 80 of gestation, a total of 64 sows with similar body condition were allocated to a completely randomized block design with 4 dietary treatments (n = 16 sows per treatment): 1) basal diet (CON, control group); 2) basal diet supplemented with 200 IU/kg vitamin E (200VE, positive control group); 3) basal diet supplemented with 200 mg/kg GSP (200GSP); and 4) basal diet supplemented with 300 mg/kg GSP (300GSP). The trial lasted 56 d until the piglets were weaned on day 21 of lactation. Reproductive performance, parameters of antioxidative status, and levels of progesterone (P4) and estradiol (E2) in serum, nutrient composition, and Ig content in colostrum of sows were determined. The number of dead fetuses was reduced, and farrowing survival was significantly improved in the litters from 300GSP-fed (P < 0.05). Preweaning survivability significantly increased in the litters from sows fed 200GSP and 200VE (P < 0.05). The activity of superoxide dismutase and glutathione peroxidase (GSH-Px) in the serum was significantly increased in sows fed 200GSP and 300GSP (P < 0.05). The activity of GSH-Px in the serum also significantly increased in sows fed 200VE (P < 0.05). Sows fed 300GSP had the greatest levels of P4 and E2 in the serum, which was significantly greater than sows fed 200VE and CON (P < 0.05). No significant differences were found among treatments for the content of solids-not-fat, fat, protein, and lactose in colostrum (P > 0.05). However, sows fed GSP had greater IgM and IgG content in colostrum compared with sows fed 200VE and CON (P < 0.05). In conclusion, dietary GSP supplementation during late gestation and lactation improved the farrowing survival and preweaning survivability, enhanced the antioxidant status and hormone levels in serum, and increased the IgM and IgG content in colostrum of sows.


Asunto(s)
Antioxidantes/análisis , Calostro/química , Suplementos Dietéticos , Polifenoles/farmacología , Reproducción/efectos de los fármacos , Vitis/química , Alimentación Animal/análisis , Animales , Líquidos Corporales/metabolismo , Dieta/veterinaria , Femenino , Glutatión Peroxidasa/sangre , Inmunoglobulina G/análisis , Lactancia/efectos de los fármacos , Paridad , Embarazo , Distribución Aleatoria , Porcinos , Vitamina E/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA