Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 317: 137881, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36657582

RESUMEN

Recycling nutrients is of paramount importance. For this reason, struvite and nitrogen enriched zeolite fertilizers produced from wastewater treatments are receiving growing attention in European markets. However, their effects on agricultural soils are far from certain, especially struvite, which only recently was implemented in EU Fertilizing Product Regulations. In this paper, we investigate the effects of these materials in acid sandy arable soil, particularly focusing on N dynamics, evaluating potential losses, transformation pathways, and the effects of struvite and zeolitic tuffs on main soil biogeochemical parameters, in comparison to traditional fertilization with digestate. Liming effect (pH alkalinization) was observed in all treatments with varying intensities, affecting most of the soil processes. The struvite was quickly solubilized due to soil acidity, and the release of nutrients stimulated nitrifying and denitrifying microorganisms. Zeolitic tuff amendments decreased the NOx gas emissions, which are precursors to the powerful climate altering N2O gas, and the N enriched chabazite tuff also recorded smaller NH3 emissions compared to the digestate. However, a high dosage of zeolites in soil increased NH3 emissions after fertilization, due to pronounced pH shifts. Contrasting effects were observed between the two zeolitic tuffs when applied as soil amendments; while the chabazite tuff had a strong positive effect - increasing up to ∼90% the soil microbial N immobilization - the employed clinoptilolite tuff had immediate negative effects on the microbial biomass, likely due to the large quantities of sulphur released. However, when applied at lower dosages, the N enriched clinoptilolite also contributed to the increase of microbial N. From these outcomes, we confirm the potential of struvite and zeolites to mitigate the outfluxes of nutrients from agricultural systems. To gain the best results and significantly lower environmental impacts, extension practitioners could give recommendations based on the soils that are planned for zeolite application.


Asunto(s)
Zeolitas , Zeolitas/química , Nitrógeno/química , Estruvita , Agricultura , Suelo/química , Fertilizantes , Óxido Nitroso/análisis
2.
Front Microbiol ; 12: 660566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745021

RESUMEN

Molecular diagnostic methods are increasingly applied for food and environmental analysis. Since several steps are involved in sample processing which can affect the outcome (e.g., adhesion of DNA to the sample matrix, inefficient precipitation of DNA, pipetting errors and (partial) loss of the DNA pellet during DNA isolation), quality control is essential at all processing levels. In soil microbiology, particular attention has been paid to the inorganic component of the sample matrix affecting DNA extractability. In water quality testing, however, this aspect has mostly been neglected so far, although it is conceivable that these mechanisms have a similar impact. The present study was therefore dedicated to investigate possible matrix effects on results of water quality analysis. Field testing in an aquatic environment with pronounced chemo-physical gradients [total suspended solids (TSS), inorganic turbidity, total organic carbon (TOC), and conductivity] indicated a negative association between DNA extractability (using a standard phenol/chloroform extraction procedure) and turbidity (spearman ρ = -0.72, p < 0.001, n = 21). Further detailed laboratory experiments on sediment suspensions confirmed the hypothesis of inorganic turbidity being the main driver for reduced DNA extractability. The observed effects, as known from soil samples, were also indicated to result from competitive effects for free charges on clay minerals, leading to adsorption of DNA to these inorganic particles. A protocol modification by supplementing the extraction buffer with salmon sperm DNA, to coat charged surfaces prior to cell lysis, was then applied on environmental water samples and compared to the standard protocol. At sites characterized by high inorganic turbidity, DNA extractability was significantly improved or made possible in the first place by applying the adapted protocol. This became apparent from intestinal enterococci and microbial source tracking (MST)-marker levels measured by quantitative polymerase chain reaction (qPCR) (100 to 10,000-fold median increase in target concentrations). The present study emphasizes the need to consider inorganic turbidity as a potential loss factor in DNA extraction from water-matrices. Negligence of these effects can lead to a massive bias, by up to several orders of magnitude, in the results of molecular MST and fecal pollution diagnostics.

3.
Ecology ; 93(4): 770-82, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22690628

RESUMEN

Resource stoichiometry (C:N:P) is an important determinant of litter decomposition. However, the effect of elemental stoichiometry on the gross rates of microbial N and P cycling processes during litter decomposition is unknown. In a mesocosm experiment, beech (Fagus sylvatica L.) litter with natural differences in elemental stoichiometry (C:N:P) was incubated under constant environmental conditions. After three and six months, we measured various aspects of nitrogen and phosphorus cycling. We found that gross protein depolymerization, N mineralization (ammonification), and nitrification rates were negatively related to litter C:N. Rates of P mineralization were negatively correlated with litter C:P. The negative correlations with litter C:N were stronger for inorganic N cycling processes than for gross protein depolymerization, indicating that the effect of resource stoichiometry on intracellular processes was stronger than on processes catalyzed by extracellular enzymes. Consistent with this, extracellular protein depolymerization was mainly limited by substrate availability and less so by the amount of protease. Strong positive correlations between the interconnected N and P pools and the respective production and consumption processes pointed to feed-forward control of microbial litter N and P cycling. A negative relationship between litter C:N and phosphatase activity (and between litter C:P and protease activity) demonstrated that microbes tended to allocate carbon and nutrients in ample supply into the production of extracellular enzymes to mine for the nutrient that is more limiting. Overall, the study demonstrated a strong effect of litter stoichiometry (C:N:P) on gross processes of microbial N and P cycling in decomposing litter; mineralization of N and P were tightly coupled to assist in maintaining cellular homeostasis of litter microbial communities.


Asunto(s)
Biodegradación Ambiental , Fagus/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Hojas de la Planta/química , Ecosistema , Hojas de la Planta/fisiología
4.
FEMS Microbiol Ecol ; 73(3): 430-40, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20550579

RESUMEN

The carbon-use-efficiency (CUE) of microorganisms is an important parameter in determining ecosystem-level carbon (C) cycling; however, little is known about how variance in resources affects microbial CUE. To elucidate how resource quantity and resource stoichiometry affect microbial CUE, we cultured four microorganisms - two fungi (Aspergillus nidulans and Trichoderma harzianum) and two bacteria (Pectobacterium carotovorum and Verrucomicrobium spinosum) - under 12 unique C, nitrogen (N) and phosphorus (P) ratios. Whereas the CUE of A. nidulans was strongly affected by C, bacterial CUE was more strongly affected by mineral nutrients (N and P). Specifically, CUE in P. carotovorum was positively correlated with P, while CUE of V. spinosum primarily depended on N. This resulted in a positive relationship between fungal CUE and resource C : nutrient stoichiometry and a negative relationship between bacterial CUE and resource C : nutrient stoichiometry. The difference in the direction of the relationship between CUE and C : nutrient for fungi vs. bacteria was consistent with differences in biomass stoichiometry and suggested that fungi have a higher C demand than bacteria. These results suggest that the links between biomass stoichiometry, resource demand and CUE may provide a mechanism for commonly observed temporal and spatial patterns in microbial community structure and function in natural habitats.


Asunto(s)
Aspergillus nidulans/metabolismo , Carbono/metabolismo , Pectobacterium carotovorum/metabolismo , Trichoderma/metabolismo , Aspergillus nidulans/crecimiento & desarrollo , Biomasa , Ecosistema , Nitrógeno/metabolismo , Pectobacterium carotovorum/crecimiento & desarrollo , Fósforo/metabolismo , Trichoderma/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA