Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nutr ; 62(4): 1845-1857, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36853380

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis is associated with a reduction in the bioavailability and/or bioactivity of endogenous nitric oxide (NO). Dietary nitrate has been proposed as an alternate source when endogenous NO production is reduced. Our previous study demonstrated a protective effect of dietary nitrate on the development of atherosclerosis in the apoE-/- mouse model. However most patients do not present clinically until well after the disease is established. The aims of this study were to determine whether chronic dietary nitrate supplementation can prevent or reverse the progression of atherosclerosis after disease is already established, as well as to explore the underlying mechanism of these cardiovascular protective effects. METHODS: 60 apoE-/- mice were given a high fat diet (HFD) for 12 weeks to allow for the development of atherosclerosis. The mice were then randomized to (i) control group (HFD + 1 mmol/kg/day NaCl), (ii) moderate-dose group (HFD +1 mmol/kg/day NaNO3), or (iii) high-dose group (HFD + 10 mmol/kg/day NaNO3) (20/group) for a further 12 weeks. A group of apoE-/- mice (n = 20) consumed a normal laboratory chow diet for 24 weeks and were included as a reference group. RESULTS: Long-term supplementation with high dose nitrate resulted in ~ 50% reduction in plaque lesion area. Collagen expression and smooth muscle accumulation were increased, and lipid deposition and macrophage accumulation were reduced within atherosclerotic plaques of mice supplemented with high dose nitrate. These changes were associated with an increase in nitrite reductase as well as activation of the endogenous eNOS-NO pathway. CONCLUSION: Long-term high dose nitrate significantly attenuated the progression of established atherosclerosis in the apoE-/- mice fed a HFD. This appears to be mediated in part through a XOR-dependent reduction of nitrate to NO, as well as enhanced eNOS activation via increased Akt and eNOS phosphorylation.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Apolipoproteínas E/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Ratones Endogámicos C57BL , Ratones Noqueados , Nitratos , Óxido Nítrico , Placa Aterosclerótica/prevención & control
2.
Hypertens Res ; 38(1): 13-20, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25099489

RESUMEN

Hydrogen sulfide (H2S) is increasingly recognized as a gasotransmitter with protective effects in the cardiovascular system. The aim of the study was to examine the effects of chronic NaHS treatment on blood pressure, vascular function and oxidative stress in an in vivo model of hypertension and oxidative stress. Male C57Bl6/J mice were rendered hypertensive with 0.7 mg kg(-1) per day angiotensin II (AngII) for 14 days administered via implanted mini-pumps. The mice were treated with NaHS (10 µmol kg(-1) per day) to deliver H2S or an inhibitor of cystathionine-γ-lyase, DL-propargylglycine (PPG 30 mg kg(-1) per day) via intraperitoneal (i.p.) injection. Systolic blood pressure was measured and vascular function examined by myography. Vascular superoxide production was measured by lucigenin-enhanced chemiluminescence. AngII infusion significantly increased systolic blood pressure (P < 0.001). This increase was significantly attenuated by treatment with NaHS (P < 0.001). Both aortic endothelial function and NO bioavailability were significantly attenuated in the AngII group (P < 0.01) but this attenuation was reversed by NaHS treatment. Similarly, aortic superoxide anion production was significantly enhanced by AngII (P < 0.01), and this was reversed by NaHS treatment, and also exacerbated by PPG treatment (P < 0.001). These data show that in a mouse model of hypertension and oxidative stress induced by AngII, exogenous H2S treatment in vivo reduces blood pressure, endothelial dysfunction and vascular oxidative stress, while inhibiting endogenous H2S production in vivo is deleterious. This furthers the evidence that H2S is a vasoprotective molecule that may be a useful treatment target in cardiovascular disease.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Sulfuro de Hidrógeno/uso terapéutico , Hipertensión/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Angiotensina II , Animales , Cistationina gamma-Liasa/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Endotelio Vascular/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Óxido Nítrico/metabolismo , Superóxidos/metabolismo
3.
PLoS One ; 7(11): e44481, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144773

RESUMEN

BACKGROUND: Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC) activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•)-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272. METHODS: Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1), 60nmol/L) in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined. RESULTS: We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L) elicited concentration-dependent antihypertrophic actions, inhibiting ET(1)-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1)-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP), without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272. CONCLUSIONS: Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar) concentrations. Thus this distinctive sGC ligand may potentially represent an alternative therapeutic approach for limiting myocardial hypertrophy.


Asunto(s)
Benzoatos/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Activación Enzimática/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/agonistas , Animales , Benzoatos/farmacología , Cardiomegalia/patología , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Endotelina-1/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Guanilato Ciclasa/metabolismo , Proteínas de Microfilamentos/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfoproteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA