Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(10): E2366-E2375, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463745

RESUMEN

Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.


Asunto(s)
Aglaia/química , Antimaláricos/administración & dosificación , Malaria Cerebral/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
Brain ; 135(Pt 5): 1566-77, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22427328

RESUMEN

Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an auditory covert naming task in five bilaterally anophthalmic subjects, who have never received visual input. When listening to auditory definitions and covertly retrieving words, these subjects activated lateral occipital cortex bilaterally in addition to the language areas activated in sighted controls. This activity was significantly greater than that present in a control condition of listening to reversed speech. The lateral occipital cortex was also recruited into a left-lateralized resting-state network that usually comprises anterior and posterior language areas. Levels of activation to the auditory naming and reversed speech conditions did not differ in the calcarine (striate) cortex. This primary 'visual' cortex was not recruited to the left-lateralized resting-state network and showed high interhemispheric correlation of activity at rest, as is typically seen in unimodal cortical areas. In contrast, the interhemispheric correlation of resting activity in extrastriate areas was reduced in anophthalmia to the level of cortical areas that are heteromodal, such as the inferior frontal gyrus. Previous imaging studies in the congenitally blind show that primary visual cortex is activated in higher-order tasks, such as language and memory to a greater extent than during more basic sensory processing, resulting in a reversal of the normal hierarchy of functional organization across 'visual' areas. Our data do not support such a pattern of organization in anophthalmia. Instead, the patterns of activity during task and the functional connectivity at rest are consistent with the known hierarchy of processing in these areas normally seen for vision. The differences in cortical organization between bilateral anophthalmia and other forms of congenital blindness are considered to be due to the total absence of stimulation in 'visual' cortex by light or retinal activity in the former condition, and suggests development of subcortical auditory input to the geniculo-striate pathway.


Asunto(s)
Anoftalmos/patología , Mapeo Encefálico , Lenguaje , Conducta Verbal/fisiología , Corteza Visual/irrigación sanguínea , Corteza Visual/fisiopatología , Estimulación Acústica , Adulto , Análisis de Varianza , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Nombres , Vías Nerviosas/irrigación sanguínea , Vías Nerviosas/fisiopatología , Oxígeno/sangre , Percepción del Habla/fisiología , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA