Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066497

RESUMEN

Autophagy is an intracellular process in all eukaryotes which is responsible for the degradation of cytoplasmic constituents, recycling of organelles, and recycling of proteins. It is an important cellular process responsible for the effective virulence of several pathogenic plant fungal strains, having critical impacts on important crop plants including potatoes. However, the detailed physiological mechanisms of autophagy involved in the infection biology of soil-borne pathogens in the potato crop needs to be investigated further. In this study, the autophagy-related gene, FoATG12, in potato dry rot fungus Fusarium oxysporum was investigated by means of target gene replacement and overexpression. The deletion mutant ∆FoATG12 showed reduction in conidial formation and exhibited impaired aerial hyphae. The FoATG12 affected the expression of genes involved in pathogenicity and vegetative growth, as well as on morphology features of the colony under stressors. It was found that the disease symptoms were delayed upon being inoculated by the deletion mutant of FoATG12 compared to the wild-type (WT) and overexpression (OE), while the deletion mutant showed the disease symptoms on tomato plants. The results confirmed the significant role of the autophagy-related ATG12 gene in the production of aerial hyphae and the effective virulence of F. oxysporum in the potato crop. The current findings provid an enhanced gene-level understanding of the autophagy-related virulence of F. oxysporum, which could be helpful in pathogen control research and could have vital impacts on the potato crop.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/citología , Fusarium/genética , Genes Fúngicos , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidad , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Mutación/genética , Fenotipo , Enfermedades de las Plantas/genética , Esporas Fúngicas/crecimiento & desarrollo , Estrés Fisiológico/genética
2.
Genes (Basel) ; 10(9)2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466418

RESUMEN

Fusarium oxysporum is the most important pathogen of potatoes which causes post-harvest destructive losses and deteriorates the market value of potato tubers worldwide. Here, F. oxysporum was used as a host pathogen model system and it was revealed that autophagy plays a vital role as a regulator in the morphology, cellular growth, development, as well as the pathogenicity of F. oxysporum. Previous studies based upon identification of the gene responsible for encoding the autophagy pathway components from F. oxysporum have shown putative orthologs of 16 core autophagy related-ATG genes of yeast in the genome database which were autophagy-related and comprised of ubiquitin-like protein atg3. This study elucidates the molecular mechanism of the autophagy-related gene Foatg3 in F. oxysporum. A deletion (∆) mutants of F. oxysporum (Foatg3∆) was generated to evaluate nuclear dynamics. As compared to wild type and Foatg3 overexpression (OE) strains, Foatg3∆ strains failed to show positive MDC (monodansylcadaverine) staining which revealed that Foatg3 is compulsory for autophagy in F. oxysporum. A significant reduction in conidiation and hyphal growth was shown by the Foatg3∆ strains resulting in loss of virulence on potato tubers. The hyphae of Foatg3∆ mutants contained two or more nuclei within one hyphal compartment while wild type hyphae were composed of uninucleate hyphal compartments. Our findings reveal that the vital significance of Foatg3 as a key target in controlling the dry rot disease in root crops and potato tubers at the postharvest stage has immense potential of disease control and yield enhancement.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Eliminación de Gen , Hifa/genética , Hifa/crecimiento & desarrollo , Solanum tuberosum/microbiología , Virulencia/genética
3.
Genes (Basel) ; 10(5)2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086099

RESUMEN

Autophagy is a universal catabolic process preserved in eukaryotes from yeast to plants and mammals. The main purpose of autophagy is to degrade cytoplasmic materials within the lysosome/vacuole lumen and generate an internal nutrient pool that is recycled back to the cytosol during nutrient stress. Here, Fusarium oxysporum was utilized as a model organism, and we found that autophagy assumes an imperative job in affecting the morphology, development, improvement and pathogenicity of F. oxysporum. The search of autophagy pathway components from the F. oxysporum genome database recognized putative orthologs of 16 core autophagy-related (ATG) genes of yeast, which additionally incorporate the ubiquitin-like protein atg22. Present study elucidates the unreported role of Foatg22 in formation of autophagosomes. The deletion mutant of Foatg22 did not demonstrate positive monodansylcadaverine (MDC) staining, which exposed that Foatg22 is required for autophagy in F. oxysporum. Moreover, the ∆Foatg22 strains exhibited a decrease in hyphal development and conidiation, and reduction in pathogenicity on potato tubers and leaves of potato plant. The hyphae of ∆Foatg22 mutants were less dense when contrasted with wild-type (WT) and overexpression (OE) mutants. Our perceptions demonstrated that Foatg22 might be a key regulator for the control of dry rot disease in tuber and root crops during postharvest stage.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Fusarium/genética , Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/metabolismo , Hifa/citología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Enfermedades de las Plantas/microbiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Solanum tuberosum , Vacuolas/metabolismo , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA