Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677768

RESUMEN

The delayed healing of wounds among people with diabetes is a severe problem worldwide. Hyperglycemia and increased levels of free radicals are the major inhibiting factors of wound healing in diabetic patients. Plant extracts are a rich source of polyphenols, allowing them to be an effective agent for wound healing. Drying temperature and extraction solvent highly affect the stability of polyphenols in plant materials. However, there is a need to optimize the extraction protocol to ensure the efficacy of the final product. For this purpose, the effects of drying temperature and solvents on the polyphenolic composition and diabetic wound healing activity of Moringa oleifera leaves were examined in the present research. Fresh leaves were oven dried at different temperatures (10 °C, 30 °C, 50 °C, and 100 °C) and extracted in three solvents (acetone, ethanol, and methanol) to obtain twelve extracts in total. The extracts were assessed for free radical scavenging and antihyperglycemic effects using DPPH (2,2-diphenylpicrylhydrazyl) and α- glucosidase inhibition assays. Alongside this, a scratch assay was performed to evaluate the cell migration activity of M. oleifera on the human retinal pigment epithelial cell line. The cytotoxicity of the plant extracts was assessed on human retinal pigment epithelial (RPE) and hepatocellular carcinoma (Huh-7) cell lines. Using high-performance liquid chromatography, phenolic compounds in extracts of M. oleifera were identified. We found that an ethanol-based extract prepared by drying the leaves at 10 °C contained the highest amounts of identified polyphenols. Moringa oleifera extracts showed remarkable antioxidant, antidiabetic, and cell migration properties. The best results were obtained with leaves dried at 10 °C and 30 °C. Decreased activities were observed with drying temperatures of 50 °C and above. Moreover, M. oleifera extracts exhibited no toxicity on RPE cells, and the same extracts were cytotoxic for Huh-7 cells. This study revealed that M. oleifera leaves extracts can enhance wound healing in diabetic conditions due to their antihyperglycemic, antioxidant, and cell migration effects. The leaves of this plant can be an excellent therapeutic option when extracted at optimum conditions.


Asunto(s)
Diabetes Mellitus , Moringa oleifera , Humanos , Antioxidantes/farmacología , Antioxidantes/análisis , Solventes , Moringa oleifera/química , Temperatura , Polifenoles/farmacología , Polifenoles/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cicatrización de Heridas , Hipoglucemiantes/farmacología , Etanol , Hojas de la Planta/química
2.
PLoS One ; 17(1): e0259190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986148

RESUMEN

Emergence of multidrug resistant pathogens is increasing globally at an alarming rate with a need to discover novel and effective methods to cope infections due to these pathogens. Green nanoparticles have gained attention to be used as efficient therapeutic agents because of their safety and reliability. In the present study, we prepared zinc oxide nanoparticles (ZnO NPs) from aqueous leaf extract of Acacia arabica. The nanoparticles produced were characterized through UV-Visible spectroscopy, scanning electron microscopy, and X-ray diffraction. In vitro antibacterial susceptibility testing against foodborne pathogens was done by agar well diffusion, growth kinetics and broth microdilution assays. Effect of ZnO NPs on biofilm formation (both qualitatively and quantitatively) and exopolysaccharide (EPS) production was also determined. Antioxidant potential of green synthesized nanoparticles was detected by DPPH radical scavenging assay. The cytotoxicity studies of nanoparticles were also performed against HeLa cell lines. The results revealed that diameter of zones of inhibition against foodborne pathogens was found to be 16-30 nm, whereas the values of MIC and MBC ranged between 31.25-62.5 µg/ml. Growth kinetics revealed nanoparticles bactericidal potential after 3 hours incubation at 2 × MIC for E. coli while for S. aureus and S. enterica reached after 2 hours of incubation at 2 × MIC, 4 × MIC, and 8 × MIC. 32.5-71.0% inhibition was observed for biofilm formation. Almost 50.6-65.1% (wet weight) and 44.6-57.8% (dry weight) of EPS production was decreased after treatment with sub-inhibitory concentrations of nanoparticles. Radical scavenging potential of nanoparticles increased in a dose dependent manner and value ranged from 19.25 to 73.15%. Whereas cytotoxicity studies revealed non-toxic nature of nanoparticles at the concentrations tested. The present study suggests that green synthesized ZnO NPs can substitute chemical drugs against antibiotic resistant foodborne pathogens.


Asunto(s)
Acacia/metabolismo , Enfermedades Transmitidas por los Alimentos/prevención & control , Nanopartículas del Metal/química , Óxido de Zinc/química , Antibacterianos/farmacología , Antioxidantes/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Enfermedades Transmitidas por los Alimentos/microbiología , Tecnología Química Verde/métodos , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Microscopía Electrónica de Rastreo/métodos , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Espectrometría por Rayos X/métodos , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X/métodos , Zinc/química , Zinc/metabolismo , Óxido de Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA