Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 66(1): 8-19, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29251504

RESUMEN

Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.


Asunto(s)
Celulosa , Suplementos Dietéticos , Industria de Alimentos/métodos , Nanoestructuras/química , Animales , Células Inmovilizadas , Emulsionantes/química , Enzimas Inmovilizadas , Aditivos Alimentarios/química , Embalaje de Alimentos , Humanos , Mamíferos , Nanoestructuras/toxicidad
2.
Carbohydr Polym ; 168: 61-69, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28457464

RESUMEN

Probiotic (Lactobacillus rhamnosus ATCC 9595) was encapsulated in alginate-CNC-lecithin microbeads to produce nutraceutical microcapsules. Addition of CNC and lecithin in alginate microbeads (ACL-1) improved the viability of L. rhamnosus during gastric passage and storage. The compression strength of the freeze-dried ACL-1 microbeads improved 40% compared to alginate microbeads alone. Swelling studies revealed that addition of CNC and lecithin in alginate microbeads decreased (around 47%) the gastric fluid absorption but increased the dissolution time by 20min compared to alginate microbeads (A-0). During transition through the gastric passage, the viability of L. rhamnosus in dried ACL-1 microbeads was increased 37% as compared to A-0 based beads. At 25 and 4°C storage conditions, the viability of L. rhamnosus encapsulated in ACL-1 microbeads decreased by 1.23 and 1.08 log respectively, whereas the encapsulation with A-0 microbeads exhibited a 3.17 and 1.93 log reduction respectively.


Asunto(s)
Alginatos/química , Celulosa/química , Lecitinas/química , Nanocompuestos , Probióticos/administración & dosificación , Composición de Medicamentos , Ácidos Hexurónicos , Nanopartículas
3.
Crit Rev Food Sci Nutr ; 54(2): 163-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24188266

RESUMEN

Global environmental concern, regarding the use of petroleum-based packaging materials, is encouraging researchers and industries in the search for packaging materials from natural biopolymers. Bioactive packaging is gaining more and more interest not only due to its environment friendly nature but also due to its potential to improve food quality and safety during packaging. Some of the shortcomings of biopolymers, such as weak mechanical and barrier properties can be significantly enhanced by the use of nanomaterials such as nanocellulose (NC). The use of NC can extend the food shelf life and can also improve the food quality as they can serve as carriers of some active substances, such as antioxidants and antimicrobials. The NC fiber-based composites have great potential in the preparation of cheap, lightweight, and very strong nanocomposites for food packaging. This review highlights the potential use and application of NC fiber-based nanocomposites and also the incorporation of bioactive agents in food packaging.


Asunto(s)
Celulosa , Embalaje de Alimentos/instrumentación , Nanocompuestos , Antioxidantes , Bacterias/metabolismo , Bacteriocinas , Biopolímeros/clasificación , Conservación de Alimentos , Calidad de los Alimentos , Humanos , Aceites Volátiles , Extractos Vegetales , Madera/química
4.
Crit Rev Food Sci Nutr ; 53(9): 909-16, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23768183

RESUMEN

Encapsulation of probiotic bacteria is generally used to enhance the viability during processing, and also for the target delivery in gastrointestinal tract. Probiotics are used with the fermented dairy products, pharmaceutical products, and health supplements. They play a great role in maintaining human health. The survival of these bacteria in the human gastrointestinal system is questionable. In order to protect the viability of the probiotic bacteria, several types of biopolymers such as alginate, chitosan, gelatin, whey protein isolate, cellulose derivatives are used for encapsulation and several methods of encapsulation such as spray drying, extrusion, emulsion have been reported. This review focuses on the method of encapsulation and the use of different biopolymeric system for encapsulation of probiotics.


Asunto(s)
Células Inmovilizadas , Polímeros/química , Probióticos , Alginatos/química , Disponibilidad Biológica , Supervivencia Celular , Celulosa/química , Quitosano/química , Productos Lácteos/microbiología , Fermentación , Calidad de los Alimentos , Tracto Gastrointestinal/microbiología , Gelatina/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Lactobacillaceae/aislamiento & purificación , Lactobacillaceae/metabolismo , Proteínas de la Leche/química , Proteína de Suero de Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA