Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(5): e0264460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35617167

RESUMEN

Interaction of thymol, carvacrol and linalool with fungal lipase and Human Serum Albumin (HSA) have been investigated employing UV-Vis spectroscopy Fluorescence and Circular dichroism spectroscopy (CD) along with docking studies. Thymol, carvacrol and linalool displayed approximately 50% inhibition at 1.5 mmol/litre concentrations using para-nitrophenyl palmitate (pNPP). UV-Vis spectroscopy give evidence of the formation of lipase-linalool, lipase-carvacrol and lipase-thymol complex at the ground state. Three molecules also showed complex formation with HSA at the ground state. Fluorescence spectroscopy shows strong binding of lipase to thymol (Ka of 2.6 x 109 M-1) as compared to carvacrol (4.66 x 107 M-1) and linalool (5.3 x 103 M-1). Number of binding sites showing stoichiometry of association process on lipase is found to be 2.52 (thymol) compared to 2.04 (carvacrol) and 1.12 (linalool). Secondary structure analysis by CD spectroscopy results, following 24 hours incubation at 25°C, with thymol, carvacrol and linalool revealed decrease in negative ellipticity for lipase indicating loss in helical structure as compared with the native protein. The lowering in negative ellipticity was in the order of thymol > carvacrol > linalool. Fluorescence spectra following binding of all three molecules with HSA caused blue shift which suggests the compaction of the HSA structure. Association constant of thymol and HSA is 9.6 x 108 M-1 which along with 'n' value of 2.41 suggests strong association and stable complex formation, association constant for carvacrol and linalool was in range of 107 and 103 respectively. Docking results give further insight into strong binding of thymol, carvacrol and linalool with lipase having free energy of binding as -7.1 kcal/mol, -5.0 kcal/mol and -5.2 kcal/mol respectively. To conclude, fungal lipases can be attractive target for controlling their growth and pathogenicity. Employing UV-Vis, Fluorescence and Circular dichroism spectroscopy we have shown that thymol, carvacrol and linalool strongly bind and disrupt structure of fungal lipase, these three phytochemicals also bind well with HSA. Based on disruption of lipase structure and its binding nature with HSA, we concluded thymol as a best anti-lipase molecule among three molecules tested. Results of Fluorescence and CD spectroscopy taken together suggests that thymol and carvacrol are profound disrupter of lipase structure.


Asunto(s)
Lipasa , Timol , Sitios de Unión , Dicroismo Circular , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia , Termodinámica , Timol/farmacología
2.
Adv Pharmacol Sci ; 2015: 823539, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442119

RESUMEN

Although modern lifestyle has eased the quality of human life, this lifestyle's related patterns have imparted negative effects on health to acquire multiple diseases. Many synthetic drugs are invented during the last millennium but most if not all of them possess several side effects and proved to be costly. Convincing evidences have established the premise that the phytotherapeutic potential of natural compounds and need of search for novel drugs from natural sources are of high priority. Phenolic acids (PAs) are a class of secondary metabolites spread throughout the plant kingdom and generally involved in plethora of cellular processes involved in plant growth and reproduction and also produced as defense mechanism to sustain various environmental stresses. Extensive research on PAs strongly suggests that consumption of these compounds hold promise to offer protection against various ailments in humans. This paper focuses on the naturally derived PAs and summarizes the action mechanisms of these compounds during disease conditions. Based on the available information in the literature, it is suggested that use of PAs as drugs is very promising; however more research and clinical trials are necessary before these bioactive molecules can be made for treatment. Finally this review provides greater awareness of the promise that natural PAs hold for use in the disease prevention and therapy.

3.
Fitoterapia ; 83(3): 434-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22178679

RESUMEN

Cinnamaldehyde, its derivatives and curcumin are reported to have strong antifungal activity. In this work we report and compare anticandidal activity of curcumin (CUR) and α-methyl cinnamaldehyde (MCD) against 38 strains of Candida (3; standard, fluconazole sensitive, 24; clinical, fluconazole sensitive, 11; clinical, fluconazole resistant). The minimum inhibitory concentrations (MIC90) of CUR ranged from 250 to 650 µg/ml for sensitive strains and from 250 to 500 µg/ml for resistant strains. MIC90 of MCD varied between 100 and 250 µg/ml and 100-200 µg/ml for sensitive and resistant strains, respectively. Higher activity of MCD as compared to CUR was further reinforced by spot assays and growth curve studies. At their respective MIC90 values, in the presence of glucose, average inhibition of H+-efflux caused by CUR and MCD against standard, clinical and resistant isolates was 24%, 31%, 32% and 54%, 52%, 54%, respectively. Inhibition of H+-extrusion leads to intracellular acidification and cell death, average pHi for control, CUR and MCD exposed cells was 6.68, 6.39 and 6.20, respectively. Scanning electron micrographs of treated cells show more extensive damage in case of MCD. Haemolytic activity of CUR and MCD at their highest MIC was 11.45% and 13.00%, respectively as against 20% shown by fluconazole at typical MIC of 30 µg/ml. In conclusion, this study shows significant anticandidal activity of CUR and MCD against both azole-resistant and sensitive clinical isolates, MCD is found to be more effective.


Asunto(s)
Acroleína/análogos & derivados , Antifúngicos/farmacología , Candida/efectos de los fármacos , Curcumina/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Extractos Vegetales/farmacología , Acroleína/farmacología , Candida/patogenicidad , Eritrocitos/efectos de los fármacos , Fluconazol/farmacología , Hemólisis/efectos de los fármacos , Humanos
4.
J Gen Appl Microbiol ; 57(3): 129-36, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21817824

RESUMEN

p-Anisaldehyde (4-methoxybenzaldehyde), an extract from Pimpinella anisum seeds, is a very common digestive herb of north India. Antifungal activity of p-anisaldehyde was investigated on 10 fluconazole-resistant and 5 fluconazole-sensitive Candida strains. Minimum inhibitory concentrations (MIC(90)) ranged from 250 µg/ml to 600 µg/ml for both sensitive and resistant strains. Ergosterol content was drastically reduced by p-anisaldehyde-62% in sensitive and 66% in resistant strains-but did not corelate well with MIC(90) values. It appears that p-anisaldehyde exerts its antifungal effect by decreasing NADPH routed through up-regulation of putative aryl-alcohol dehydrogenases. Cellular toxicity of p-anisaldehyde against H9c2 rat cardiac myoblasts was less than 20% at the highest MIC value. These findings encourage further development of p-anisaldehyde.


Asunto(s)
Antifúngicos/farmacología , Benzaldehídos/farmacología , Candida/crecimiento & desarrollo , Candida/metabolismo , Ergosterol/biosíntesis , Extractos Vegetales/farmacología , Animales , Antifúngicos/aislamiento & purificación , Benzaldehídos/aislamiento & purificación , Benzaldehídos/toxicidad , Candida/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ergosterol/antagonistas & inhibidores , India , Pruebas de Sensibilidad Microbiana , Mioblastos/efectos de los fármacos , NADP/antagonistas & inhibidores , Pimpinella/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Ratas
5.
Fitoterapia ; 82(7): 1012-20, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21708228

RESUMEN

Fluconazole resistance is becoming an important clinical concern. We studied the in vitro effects of cinnamaldehyde against 18 fluconazole-resistant Candida isolates. MIC(90) of cinnamaldehyde against different Candida isolates ranged 100-500 µg/ml. Growth and sensitivity of the organisms were significantly affected by cinnamaldehyde at different concentrations. The rapid irreversible action of this compound on fungal cells suggested membrane-located targets for its action. Insight studies to mechanism suggested that cinnamaldehyde exerts its antifungal activity by targeting sterol biosynthesis and plasma membrane ATPase activity. Inhibition of H(+) (-)ATPase leads to intracellular acidification and cell death. Toxicity against H9c2 rat cardiac myoblasts was studied to exclude the possibility of further associated cytotoxicity. The observed selectively fungicidal characteristics against fluconazole-resistant Candida isolates signify a promising candidature of this essential oil as an antifungal agent in treatments for candidosis.


Asunto(s)
Acroleína/análogos & derivados , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Fluconazol/farmacología , Fitoterapia , Extractos Vegetales/farmacología , Ácidos , Acroleína/farmacología , Acroleína/uso terapéutico , Adenosina Trifosfatasas/antagonistas & inhibidores , Animales , Antifúngicos/uso terapéutico , Candida albicans/crecimiento & desarrollo , Candidiasis/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Resistencia a Medicamentos , Pruebas de Sensibilidad Microbiana , Mioblastos Cardíacos/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Ratas , Especias , Esteroles/biosíntesis
6.
Can J Microbiol ; 56(10): 816-21, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20962904

RESUMEN

This study was carried out to show the effect of diallyldisulphide (DADS), an important organosulphur compound found in garlic (Allium sativum), on antioxidant systems in Candida species. Changes in antioxidant metabolites and antioxidant activity in the presence of DADS were found in Candida albicans and Candida tropicalis. Candida cells were treated with sublethal concentrations of DADS. DADS caused a decrease in the activity of all antioxidant enzymes except catalase, resulting in oxidative stress and damaged cells. The amount of oxidative stress generated by DADS was found to be a function of its concentration. A significant decrease in superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase activities but an increase in catalase activity were observed. Increased levels of lipid peroxidation and decreased levels of glutathione were observed in treated cells. Activity of glucose-6-phosphate dehydrogenase decreased significantly following DADS treatment and could be correlated with a decrease in glutathione concentration in both Candida species. These results indicate that diallyl disulphide acts as a pro-oxidant to Candida species and hence may act as a potent antifungal in the management of candidiasis.


Asunto(s)
Compuestos Alílicos/farmacología , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/enzimología , Estrés Oxidativo/efectos de los fármacos , Sulfuros/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Candida/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Candida tropicalis/efectos de los fármacos , Candida tropicalis/enzimología , Caspasa 3/metabolismo , Catalasa/metabolismo , Ajo/química , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato/farmacología , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión/metabolismo , Glutatión/farmacología , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA