Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Med ; 28(7): 1406-1411, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654906

RESUMEN

Evidence linking parental inflammatory bowel disease (IBD) with autism in children is inconclusive. We conducted four complementary studies to investigate associations between parental IBD and autism in children, and elucidated their underlying etiology. Conducting a nationwide population-based cohort study using Swedish registers, we found evidence of associations between parental diagnoses of IBD and autism in children. Polygenic risk score analyses of the Avon Longitudinal Study of Parents and Children suggested associations between maternal genetic liability to IBD and autistic traits in children. Two-sample Mendelian randomization analyses provided evidence of a potential causal effect of genetic liability to IBD, especially ulcerative colitis, on autism. Linkage disequilibrium score regression did not indicate a genetic correlation between IBD and autism. Triangulating evidence from these four complementary approaches, we found evidence of a potential causal link between parental, particularly maternal, IBD and autism in children. Perinatal immune dysregulation, micronutrient malabsorption and anemia may be implicated.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Trastorno del Espectro Autista/genética , Trastorno Autístico/epidemiología , Trastorno Autístico/genética , Niño , Estudios de Cohortes , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/epidemiología , Enfermedades Inflamatorias del Intestino/genética , Estudios Longitudinales , Embarazo
2.
Wellcome Open Res ; 6: 194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778569

RESUMEN

Neuroimmunology in the broadest sense is the study of interactions between the nervous and the immune systems. These interactions play important roles in health from supporting neural development, homeostasis and plasticity to modifying behaviour. Neuroimmunology is increasingly recognised as a field with the potential to deliver a significant positive impact on human health and treatment for neurological and psychiatric disorders. Yet, translation to the clinic is hindered by fundamental knowledge gaps on the underlying mechanisms of action or the optimal timing of an intervention, and a lack of appropriate tools to visualise and modulate both systems. Here we propose ten key disease-agnostic research questions that, if addressed, could lead to significant progress within neuroimmunology in the short to medium term. We also discuss four cross-cutting themes to be considered when addressing each question: i) bi-directionality of neuroimmune interactions; ii) the biological context in which the questions are addressed (e.g. health vs disease vs across the lifespan); iii) tools and technologies required to fully answer the questions; and iv) translation into the clinic. We acknowledge that these ten questions cannot represent the full breadth of gaps in our understanding; rather they focus on areas which, if addressed, may have the most broad and immediate impacts. By defining these neuroimmunology priorities, we hope to unite existing and future research teams, who can make meaningful progress through a collaborative and cross-disciplinary effort.

3.
Psychopharmacology (Berl) ; 233(9): 1559-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26037944

RESUMEN

Schizophrenia is characterised by hallucinations, delusions, depression-like so-called negative symptoms, cognitive dysfunction, impaired neurodevelopment and neurodegeneration. Epidemiological and genetic studies strongly indicate a role of inflammation and immunity in the pathogenesis of symptoms of schizophrenia. Evidence accrued over the last two decades has demonstrated that there are a number of pathways through which systemic inflammation can exert profound influence on the brain leading to changes in mood, cognition and behaviour. The peripheral immune system-to-brain communication pathways have been studied extensively in the context of depression where inflammatory cytokines are thought to play a key role. In this review, we highlight novel evidence suggesting an important role of peripheral immune-to-brain communication pathways in schizophrenia. We discuss recent population-based longitudinal studies that report an association between elevated levels of circulating inflammatory cytokines and subsequent risk of psychosis. We discuss emerging evidence indicating potentially important role of blood-brain barrier endothelial cells in peripheral immune-to-brain communication, which may be also relevant for schizophrenia. Drawing on clinical and preclinical studies, we discuss whether immune-mediated mechanisms could help to explain some of the clinical and pathophysiological features of schizophrenia. We discuss implication of these findings for approaches to diagnosis, treatment and research in future. Finally, pointing towards links with early-life adversity, we consider whether persistent low-grade activation of the innate immune response, as a result of impaired foetal or childhood development, could be a common mechanism underlying the high comorbidity between certain neuropsychiatric and physical illnesses, such as schizophrenia, depression, heart disease and type-two diabetes.


Asunto(s)
Encéfalo/fisiopatología , Sistema Inmunológico/fisiopatología , Psiconeuroinmunología , Esquizofrenia/inmunología , Esquizofrenia/fisiopatología , Humanos , Esquizofrenia/genética , Psicología del Esquizofrénico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA