Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35164038

RESUMEN

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Asunto(s)
Antineoplásicos/uso terapéutico , Clausena/química , Supresores de la Gota/uso terapéutico , Hipoglucemiantes/uso terapéutico , Leucemia/tratamiento farmacológico , Magnoliaceae/química , Aceites Volátiles/uso terapéutico , Zanthoxylum/química , Humanos , Aceites Volátiles/química
2.
Molecules ; 24(5)2019 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-30832436

RESUMEN

This paper reports the successive isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica, a widely known medicinal plant. The ethyl acetate extract of the stem bark exhibited the strongest antioxidant activity assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric reducing antioxidant power (FRAP) assays (IC50 = 46.7, 66.0, and 492.6, respectively). By column chromatography (CC) with elution of hexane and ethyl acetate at 8:2, 7:3, and 6:4 ratios, the isolation of this active extract yielded five fractions (C1⁻C5). Chemical structures of the constituents included in C1⁻C5 were elucidated by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) and resolved as methyl gallate (C1, C2, C3, C4), gallic acid (C1, C2), fraxetin (C2, C3, C4, C5), and tomentin (C3). Mixture C2 (IC50 DPPH and ABTS = 2.5 µg/mL) and C3 (IC50 FRAP = 381 µg/mL) showed the highest antioxidant properties. Among the isolated fractions, C4 was the most potential agent in growth inhibition of six bacterial strains including Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Bacillus subtilis, and Proteus mirabilis (MIC = 5, 20, 30, 20, 25, and 20 mg/mL, respectively). All identified constituents exerted an inhibitory activity on the growth of Lactuca sativa, of which the mixture C3 performed the maximal inhibition on shoot (IC50 = 49.4 µg/mL) and root (IC50 = 47.1 µg/mL) growth. Findings of this study suggest that gallic acid, methyl gallate, fraxetin, and tomentin isolated from J. podagrica possessed antioxidant, antibacterial, and growth inhibitory potentials.


Asunto(s)
Antioxidantes/química , Jatropha/química , Extractos Vegetales/química , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Benzotiazoles/química , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Proliferación Celular/efectos de los fármacos , Cumarinas/química , Cumarinas/farmacología , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ácido Gálico/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Picratos/química , Corteza de la Planta/química , Tallos de la Planta/química , Espectrometría de Masa por Ionización de Electrospray , Staphylococcus aureus/patogenicidad , Ácidos Sulfónicos/química
3.
Molecules ; 23(2)2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29414866

RESUMEN

This study isolated, determined, and quantified plant growth inhibitors in Japanese chestnut (Castanea crenata Sieb. et Zucc), a deciduous species native to Japan and Korea. In laboratory assays, C. crenata leaves showed strong inhibition on germination and seedling growth of Echinochloa crus-galli (barnyardgrass), Lactuca sativa (lettuce), and Raphanus sativus (radish). Laboratory and greenhouse trials showed that leaves of C. crenata appeared as a promising material to manage weeds, especially the dicot weeds. By GC-MS and HPLC analyses, gallic, protocatechuic, p-hydroxybenzoic, caffeic, ferulic, ellagic, and cinnamic acids were identified and quantified, of which ellagic acid was present in the highest quantity (2.36 mg/g dried leaves). By column chromatography and spectral data (¹H- and 13C-NMR, IR, and LC-MS) analysis, a compound identified as 2α,3ß,7ß,23-tetrahydroxyurs-12-ene-28-oic acid (1) was purified from the methanolic leaf extract of C. crenata (0.93 mg/g dried leaves). This constituent showed potent inhibition on growth of E. crus-galli, a problematic weed in agricultural practice. The inhibition of the compound 1 (IC50 = 2.62 and 0.41 mM) was >5 fold greater than that of p-hydroxybenzoic acid (IC50 = 15.33 and 2.11 mM) on shoot and root growth of E. crus-galli, respectively. Results suggest that the isolated the compound 1 has potential to develop natural herbicides to manage E. crus-galli. This study is the first to isolate and identify 2α,3ß,7ß,23-tetrahydroxyurs-12-ene-28-oic acid in a plant and report its plant growth inhibitory potential.


Asunto(s)
Fagaceae/química , Herbicidas/química , Herbicidas/farmacología , Malezas/efectos de los fármacos , Control de Malezas , Germinación/efectos de los fármacos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/efectos de los fármacos , Plantones/efectos de los fármacos
4.
J Pharm Investig ; 46(2): 91-132, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-32226639

RESUMEN

Bidens pilosa L. is an edible herb and has been traditionally used for a wide range of ailments in many countries. The aim of this review is to present comprehensive information of the chemical constituents, nutraceutical and ethnomedical uses as well as the biological and pharmacological effects and toxicity of this plant based on 218 literary sources reported over 40 years. Major chemical constituents (including 301 compounds) belonging to polyacetylenes, polyacetylene glycosides, flavonoids, flavone glycosides, aurones, chalcones, okanin glycosides, phenolic acids, terpenes, pheophytins, fatty acids and phytosterols have been identified or isolated from the different parts of this plant. Many of them have been considered as the bioactive compounds which are potentially responsible for the pharmacological actions. Various types of preparations, extracts and individual compounds derived from this plant have been found to possess biological and pharmacological activities such as anti-malarial, anti-allergy, anti-hypertensive and smooth muscle relaxant, anti-cancerogenic, anti-diabetic, anti-inflammatory, anti-microbial, antioxidant. The results of data analysis on the chemicals, pharmacological and toxicological characteristics of B. pilosa validate the view of its folk worldwide-medicinal uses. This herb has a great beneficial therapeutic property and is possibly used for complement or alternative to pharmaceutical drugs in some specific cases. However, this herb is known as hyperaccumulator and as-excluder; therefore, harvesting the herb for medicinal uses should be judiciously cautioned.

5.
J Agric Food Chem ; 57(20): 9448-53, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19810700

RESUMEN

From gas chromatography-mass spectrometry (GC-MS), numerous plant growth inhibitors were found in the rhizome and root exudates of cogongrass, one of the most problematic weeds in the world. iso-Eugenol, iso-ferulic acid, linoleic acid, ferulic acid, and vanillin were the major chemicals in the rhizome (88.1-392.2 microg/g of fresh root), while 4-acetyl-2-methoxyphenol was the principle substance (872.6 microg/plant) in the root exudates. In fields, the use of cutting and plowing reduced weed biomass and weed density of cogongrass >70%. However, the alternative invasion of beggar tick might be a problem, because its density and biomass increased 33.3 and 62.5%, respectively. Chemicals from cogongrass showed selective effects against tested invasive species. Of them, 2,4-di-tert-butylphenol was the most potent (78.3-100% of inhibition), followed by iso-eugenol and 4-acetyl-2-methoxyphenol. These compounds may play important roles in the invasiveness of cogongrass and might be promising parent constituents of synthesis to develop novel herbicides for control of invasive plants.


Asunto(s)
Extractos Vegetales/análisis , Poaceae/química , Poaceae/fisiología , Poaceae/crecimiento & desarrollo , Rizoma/química , Rizoma/crecimiento & desarrollo , Rizoma/fisiología
6.
J Nat Med ; 62(2): 188-94, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18404321

RESUMEN

The chemical composition of kava (Piper methysticum) lactones and various phytochemicals obtained following the sonication of ground kava roots extracted in the solvents hexane, chloroform, acetone, ethanol, methanol and water, respectively, was analyzed. Eighteen kava lactones, cinnamic acid bornyl ester and 5,7-dimethoxy-flavanone, known to be present in kava roots, were identified, and seven compounds, including 2,5,8-trimethyl-1-naphthol, 5-methyl-1-phenylhexen-3-yn-5-ol, 8,11-octadecadienoic acid-methyl ester, 5,7-(OH)(2)-4'-one-6,8-dimethylflavanone, pinostrobin chalcone and 7-dimethoxyflavanone-5-hydroxy-4', were identified for the first time. Glutathione (26.3 mg/g) was found in the water extract. Dihydro-5,6-dehydrokavain (DDK) was present at a higher level than methysticin and desmethoxyyagonin, indicating that DDK is also a major constituent of kava roots. Acetone was the most effective solvent in terms of maximum yield and types of kava lactones isolated, followed by water and chloroform, whereas hexane, methanol, and ethanol were less effective as solvents. Total phenolic and antioxidant activity varied among the extracting solvents, with acetone and chloroform producing the highest effects, followed by water, while methanol, ethanol and hexane were less effective.


Asunto(s)
Antioxidantes/química , Depuradores de Radicales Libres/química , Kava/química , Raíces de Plantas/química , Antioxidantes/aislamiento & purificación , Compuestos de Bifenilo , Chalconas/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Depuradores de Radicales Libres/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Glutatión/aislamiento & purificación , Lactonas/aislamiento & purificación , Fenoles/aislamiento & purificación , Picratos/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Piranos/aislamiento & purificación , Pironas/aislamiento & purificación , Solventes , Sonicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA