Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Hazard Mater ; 442: 129970, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162303

RESUMEN

A field study was conducted from 0 to 360 days to investigate the effect of tea pruning litter biochar (TPLBC) on the accumulation of major micronutrients (copper: Cu, manganese: Mn, and zinc: Zn) in soil, their uptake by tea plant (clone: S.3 A/3) and level of contamination in soil due to TPLBC. To evaluate the level of contamination due to TPLBC, a soil pollution assessment was carried out using the geo-accumulation index (Igeo), enrichment factor (EF), contamination factor (CF), potential ecological risk factor (PERF), individual contamination factor (ICF), and risk assessment code (RAC). The total content of Cu, Mn, and Zn gradually increased with increasing doses of TPLBC at 0D, and then decreased with time. The fractionation of the three micronutrients in soil changed after the application of TPLBC. The contamination risk assessment of soil for Cu, Mn, and Zn based on the Igeo, EF, CF, PERF,ICF, and RAC suggested that the application of TPLBC does not have any adverse effect on soil. Except for Mn, the bioconcentration and translocation factors were less than one for Cu and Zn. Results from this study revealed that the application of 400 kg TPLBC ha-1 is significantly better than the other treatments for Cu, Mn, and Zn at a 5% level of significance.


Asunto(s)
Camellia sinensis , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Micronutrientes/análisis , , Cobre/análisis , Manganeso/análisis , Monitoreo del Ambiente/métodos , Zinc/análisis , Medición de Riesgo , Metales Pesados/análisis
2.
Nucleus (Calcutta) ; 65(3): 303-320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407558

RESUMEN

The positive effect of herbal supplements on aging and age-related disorders has led to the evolution of natural curatives for remedial neurodegenerative diseases in humans. The advancement in aging is exceedingly linked to oxidative stress. Enhanced oxidative stress interrupts health of humans in various ways, necessitating to find stress alleviating herbal resources. Currently, minimal scientifically validated health and cognitive booster resources are available. Therefore, we explored the impact of plant extracts in different combinations on oxidative stress, life span and cognition using the multicellular transgenic humanized C. elegans, and further validated the same in Mus musculus, besides testing their safety and toxicity. In our investigations, the final product-the HACBF (healthy ageing cognitive booster formulation) thus developed was found to reduce major aging biomarkers like lipofuscin, protein carbonyl, lipid levels and enhanced activity of antioxidant enzymes. Further confirmation was done using transgenic worms and RT-PCR. The cognitive boosting activities analyzed in C. elegans and M. musculus model system were found to be at par with donepezil and L-dopa, the two drugs which are commonly used to treat Parkinson's and Alzheimer's diseases. In the transgenic C. elegans model system, the HACBF exhibited reduced aggregation of misfolded disease proteins α-synuclein and increased the health of nicotinic acetylcholine receptor, levels of Acetylcholine and Dopamine contents respectively, the major neurotransmitters responsible for memory, language, learning behavior and movement. Molecular studies clearly indicate that HACBF upregulated major genes responsible for healthy aging and cognitive booster activities in C. elegans and as well as in M. musculus. As such, the present herbal product thus developed may be quite useful for healthy aging and cognitive boosting activities, and more so during this covid-19 pandemic. Supplementary Information: The online version contains supplementary material available at 10.1007/s13237-022-00407-1.

3.
Environ Pollut ; 287: 117635, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34182386

RESUMEN

The presence of atrazine, a triazine herbicide, and its residues in agriculture soil poses a serious threat to human health and environment through accumulation in edible plant parts. Hence, the present study focused on atrazine induced stress amelioration of Andrographis paniculata, an important medicinal plant, by a plant growth promoting and atrazine degrading endophytic bacterium CIMAP-A7 inoculation. Atrazine has a non-significant effect at a lower dose while at a higher dose (lower: 25 and higher: 50 mg kg-1) 22 and 36% decrease in secondary metabolite content and plant dry weight of A. paniculata was recorded, respectively. Endophyte CIMAP-A7 inoculation significantly reduced atrazine soil content, by 78 and 51% at lower and a higher doses respectively, than their respective control treatments. Inoculation of CIMAP-A7 exhibited better plant growth in terms of increased total chlorophyll, carotenoid, protein, and metabolite content with reduced atrazine content under both atrazine contaminated and un-contaminated treatments. Atrazine induced oxidative stress in A. paniculata was also ameliorated by CIMAP-A7 by reducing stress enzymes, proline, and malondialdehyde accumulation under contaminated soil conditions than un-inoculated treatments. Furthermore, the presence of atrazine metabolites deisopropylatrazine (DIA) and desethylatrazine (DEA) strongly suggests a role of CIMAP-A7 in mineralization however, the absence of these metabolites in uninoculated soil and all plant samples were recorded. These findings advocate that the amelioration of atrazine induced stress with no/least pesticide content in plant tissues by plant-endophyte co-interactions would be efficient in the remediation of atrazine contaminated soils and ensure safe crop produce.


Asunto(s)
Andrographis , Atrazina , Herbicidas , Contaminantes del Suelo , Atrazina/análisis , Atrazina/toxicidad , Biodegradación Ambiental , Herbicidas/toxicidad , Humanos , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
4.
Environ Pollut ; 285: 117407, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34049138

RESUMEN

The bioaerosols present in indoor air play a major role in the transmission of infectious diseases to humans, therefore concern about their exposure is increased recently. In this regard, the present investigation described the preparation of lemongrass essential oil (LGEO) loaded chitosan and cellulose nanofibers composites (CH/CNF) for controlling the indoor air bioaerosol. The evaluation of the inhibitory effect of the composite system on culturable bacteria of the indoor air was done at different sites (air volume from 30 m3 to 80 m3) and in different size fractions of aerosol (<0.25 µm-2.5 µm). The composite system had high encapsulation efficiency (88-91%) and citrals content. A significant reduction in culturable bacteria of aerosol (from 6.23 log CFUm-3 to 2.33 log CFUm-3) was observed in presence of cellulose nanofibers and chitosan composites. The bacterial strains such as Staphylococcus sp., Bacillus cereus, Bacillus pseudomycoides sp., Pseudomonas otitidis, and Pseudomonas sp. Cf0-3 in bioaerosols were inhibited dominantly due to the diffusion of aroma molecules in indoor air. The results indicate that the interaction of diffused aroma molecule from the composite system with bacterial strains enhanced the production of ROS, resulting in loss of membrane integrity of bacterial cells. Among different size fractions of aerosol, the composite system was more effective in finer size fractions (<0.25 µm) of aerosol due to the interaction of smaller aroma compounds with bacterial cells. The study revealed that LGEO loaded chitosan and cellulose nanofibers composites could be a good option for controlling the culturable bacteria even in small-sized respirable bioaerosol.


Asunto(s)
Contaminación del Aire Interior , Quitosano , Aceites Volátiles , Aerosoles , Microbiología del Aire , Bacillus , Humanos , Aceites de Plantas , Pseudomonas , Terpenos
5.
Physiol Plant ; 2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33713449

RESUMEN

Contaminations of heavy metals such as lead (Pb) and cadmium (Cd) in medicinal plants (MPs) not only restrict their safe consumption due to health hazards but also lower their productivity. Biochar amendments in the soil are supposed to immobilize the toxic metals, improve the soil quality and agricultural productivity. However, the impact of biochar on growth attributes, metal accumulation, pharmacologically active compounds of MPs, and health risk is less explored. An experiment was performed on three medicinal plants (Bacopa monnieri (L.), Andrographis paniculata (Burmf.) Nees, and Withaniasomnifera (L.)) grown in a greenhouse in soil co-contaminated with Pb and Cd (at two concentrations) without and with biochar amendments (2 and 4% application rates). The fractionation of Pb and Cd, plant growth parameters, stress enzymes, photosynthetic capacity, pharmacologically active compounds, nutrient content, uptake and translocation of metals, antioxidant activities, and metabolite content were examined in the three MPs. The accumulation of Pb and Cd varied from 3.25-228 mg kg1 and 1.29-20.2 mg kg-1 , respectively, in the three MPs, while it was reduced to 0.08-18 mg kg-1 and 0.03-6.05 mg kg-1 upon biochar treatments. Plants grown in Pb and Cd co-contaminated soil had reduced plant biomass (5-50% depending on the species) compared to control and a deleterious effect on photosynthetic attributes and protein content. However, biochar amendments significantly improved plant biomass (21-175%), as well as photosynthesis attributes, chlorophyll, and protein contents. Biochar amendments in Pb and Cd co-contaminated soil significantly reduced the health hazard quotient (HQ) estimated for the consumption of these medicinal herbs grown on metal-rich soil. An enhancement in secondary metabolite content and antioxidant properties was also observed upon biochar treatments. These multiple beneficial effects of biochar supplementation in Pb and Cd co-contaminated soil suggested that a biochar amendment is a sustainable approach for the safe cultivation of MPs. This article is protected by copyright. All rights reserved.

6.
J Hazard Mater ; 406: 124302, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33162235

RESUMEN

The present study explores the differential responses of two genotypes (APwC: wild collection and APMS: mass selection line) of A. paniculata against the three application rates of arsenic (42, 126, and 200 mg kg-1). The oxidative enzymes, As accumulation in different tissues, plant growth, and content of pharmacologically important ent-labdane-related diterpenes (ent-LRDs) of the two genotypes were evaluated in the study. Results demonstrated that As uptake significantly reduced plant biomass in APwC and APMS by 5-41.5% and 9-33% in a dose-response manner, respectively. The APMS exhibited lower bioconcentration and translocation factors, higher As tolerance index, and higher content of ent-LRDs as compared to APWC. As treatment induced a decrease in the sum of four metabolite content of APMS (1.43 times) and an increase in that of APWC (1.12 times) as compared to control. Likewise, variance in the production of 5,7,2',3'-tetramethoxyflavanone, and stress enzymes was also observed between APwC and APMS. The increase in the expression of ApCPS2 suggested its involvement in channeling of metabolic flux towards the biosynthesis of ent-LRDs under As stress.


Asunto(s)
Andrographis , Arsénico , Diterpenos , Arsénico/toxicidad , Genotipo , Estrés Oxidativo/genética , Extractos Vegetales
7.
Bioresour Technol ; 318: 124023, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32882483

RESUMEN

The present study aimed to optimize the production of biochar from tea (Camellia sinensis L.) pruning litter. Characterization of biochar prepared from four tea pruning litters (mixed, Tocklai Vegetative 1, 22 and 25) at five pyrolysis temperatures (250, 300, 350, 400, 450, and 500 °C for 3 h) were documented. The results demonstrated that yield, total nitrogen, H:C, and O:C decreased steadily with increasing pyrolysis temperature. However, water holding capacity, ash content, fixed carbon, C:N, NH4+-N, NO3--N, trace elements, total P and K, and germination index increased consistently with increasing pyrolysis temperature. All the prepared biochars are suitable for agriculture application as H:C and O:C ratios of prepared biochars are <0.6 and <0.4, respectively. Low pyrolysis temperature (<300 °C) was optimal to get more stable biochar with respect to essential nutrients. Biochar derived from Tocklai Vegetative 1 at 300 °C has more potential for agronomic applications. Principal component analysis showed >96% variability.


Asunto(s)
Camellia sinensis , Carbón Orgánico , , Temperatura
8.
Biol Trace Elem Res ; 196(1): 318-329, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31506911

RESUMEN

Tea (Camellia sinensis L.) is the most popular beverage in the world after water. Due to acidophilic nature of tea plant, it has inherent tendency to uptake metals/metalloids including the toxic ones from the soil which is of great concern worldwide. In this study, level of chromium (Cr) and arsenic (As) were assessed in four hundred ninety-seven (497) black tea samples collected from six tea growing regions of Assam and North Bengal, India. The average concentration of Cr and As in the tested black tea samples was 10.33 and 0.11 µg g-1, respectively. Since tea is consumed as a beverage, transfer of Cr and As from black tea to its hot water extract (also known as tea infusion) was also accessed. The amount of Cr and As determined in the tea infusion was much less (< 0.20 to 1.38 µg g-1 for Cr and < 3.60 to 34.79 µg kg-1 for As) than those in the black teas with the transfer rate up to 5.96% and 8.53%, respectively. The present study showed that values of hazard quotient were well below one suggesting that intake of Cr and As from consumption of five cups of tea equivalent to 10 g black tea would not impose any health hazard.


Asunto(s)
Arsénico/análisis , Camellia sinensis/química , Cromo/análisis , Contaminación de Alimentos/análisis , Medición de Riesgo
9.
Food Res Int ; 120: 851-864, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000306

RESUMEN

Field experiment was carried out for four years in mature tea (Camellia sinensis L.) growing plot to investigate the impacts of different doses of inorganic and organic fertilizers on aluminium (Al) distribution pattern in soil and different parts of tea plant, leaf pigment concentration, gas exchange parameters, as well as the yield of tea. Results indicated that application of 6 × 103 kg compost ha-1 significantly increased the dry matter yields of tea. Pluckable shoot of tea plant were markedly stimulated in the presence of Al irrespective of treatment imposed. Furthermore, Al induced growth stimulation in tea plant was facilitated by higher photosynthesis rate as well as gas exchange parameters. For the present experiment, Tea Research Association Heavy Metal Contamination Index (TRAHMCI) decreases with increase the fertilizer dose and all the experimental soils were found non-polluted with respect to Al. Localization of Al in the root apex predominantly accumulated in the cortex. The translocation of Al from root to shoot was driven by the gradient in hydrostatic pressure and water potential. In all tea infusions influenced by different treatments, Al concentrations were within the maximum permissible limit of Al in drinking water by Provisional Tolerable Weekly Intake (PTWI) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2 mg kg-1 bw-1) and the tolerable weekly intake (TWI) established by EFSA (European Food Safety Authority, 1 mg kg-1 bw-1). Application of stepwise multiple regression model indicates that around 75% of the variability in the yield of the crop can be expressed by the selected parameters under study. The Hierarchical cluster analysis reveals that two homogenous groups of treatment can be formed based on all the studied parameters.


Asunto(s)
Aluminio/análisis , Camellia sinensis/química , Fertilizantes , Hojas de la Planta/química , Suelo/química
10.
J Hazard Mater ; 338: 250-264, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28575803

RESUMEN

The present study provides several contamination and ecological risk indices for selected metals (Cd, Cr, Cu, Mn, Ni and Zn) in tea (Camellia sinensis L.; cv. S.3A/3) growing soil influenced by lower to higher doses of inorganic and organic amendments. While ecological risk indices were applied, it was observed that same treatment showed different risk levels but contamination risk status did not vary significantly. All the indices showed significant correlation with heavy metals' concentration in young shoots of tea plants. As the indices characterized experimental soils with different extents of contamination, it would be important to standardize the indices with long term experiments followed by generation of new index. Therefore, we formulated a new contamination index named as Tea Research Association Heavy Metal Contamination Index (TRAHMCI) for tea growing soils. TRAHMCI is based on the probable change of metal status in soil with progress of growth of tea plant. This could be useful to negate discrepancies arised from use of various existing metal contamination indices in tea growing soils amended with different doses of fertilizers. TRAHMCI was formulated based on individual contamination factor using statistical technique and applied to the present dataset which provided a more holistic understanding of overall tea growing soil behavior. The limitation of the developed TRAHMCI index is that, the index had not been validated for other crops in our study not to claim its effective use for crops other than tea. As already mentioned, this new index had been formulated by taking tea as the test crop with above mentioned six heavy metal contents in young shoot and made tea.


Asunto(s)
Camellia sinensis/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Camellia sinensis/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Análisis de Componente Principal , Reproducibilidad de los Resultados , Medición de Riesgo , Espectrofotometría Atómica
11.
Biol Trace Elem Res ; 175(2): 475-487, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27339254

RESUMEN

The current study aims to assess the infusion pattern of three important micronutrients namely copper (Cu), iron (Fe), and zinc (Zn) contents from black tea samples produced in Assam (India) and Thohoyandou (South Africa). Average daily intakes and hazardous quotient were reported for these micronutrients. Total content for Cu, Fe, and Zn varied from 2.25 to 48.82 mg kg-1, 14.75 to 148.18 mg kg-1, and 28.48 to 106.68 mg kg-1, respectively. The average contents of each of the three micronutrients were higher in tea leaves samples collected from South Africa than those from India while the contents in tea infusions in Indian samples were higher than in South African tea samples. Results of this study revealed that the consumption of 600 mL tea infusion produced from 24 g of made tea per day may be beneficial to human in terms of these micronutrients content. Application of nonparametric tests revealed that most of the data sets do not satisfy the normality assumptions. Hence, the use of both parametric and nonparametric statistical analysis that subsequently revealed significant differences in elemental contents among Indian and South African tea.


Asunto(s)
Camellia sinensis/química , Cobre/análisis , Análisis de los Alimentos , Hierro/análisis , Té/química , Zinc/análisis , Humanos , India , Micronutrientes/análisis , Sudáfrica
12.
Environ Geochem Health ; 39(5): 1101-1116, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27679456

RESUMEN

In the present investigation, the concentrations of polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5, PM10 and dust particles emitted from two tea processing industrial units were studied that uses high-sulfur coal as their energy source. A total of 16 PAHs (viz. naphthalene (Nap), acenaphthene (Ace), acenaphthylene (Acen), phenanthrene (Phe), fluorene (Flu), anthracene (Ant), fluoranthene (Fluo), pyrene (Pyr), benz[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBahA), indeno[1,2,3-cd]pyrene (IP) and benzo[ghi]perylene (BghiP) were measured. The total PAH concentration was found to be 94.7 ng/m3 (∑4 PAHs) in the PM10 particle, 32.5 (∑12 PAHs) in PM2.5 and 1.08 ng/m3 (∑6 PAHs) in the dust sample from site A. In site B, the sum of the PAHs in the PM2.5, PM10 and dust samples are found to be 154.4 ng/m3 (∑7 PAHs), 165 ng/m3 (∑3 PAHs) and 1.27 ng/m3 (∑6 PAHs), respectively. Hybrid Single Particle Lagrangian Integrated Trajectory model study revealed the contribution of local or long-range transport of aerosol sources. Along with the coal combustion activities in the study sites, other sources such as biomass burning and vehicular emission may contribute to the PAHs in the aerosol samples.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Polvo/análisis , Monitoreo del Ambiente , Industria de Alimentos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , India , Tamaño de la Partícula , Azufre/análisis ,
13.
Biofactors ; 42(5): 504-514, 2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27658353

RESUMEN

Xanthones are naturally synthesized in various biological systems such as plants, lichens, and fungi and are stored as by-products. In addition to taxonomic significance they are also important in the treatment/management of a number of human disorders. Mangiferin and its derived lead molecule have never qualified for use in a clinical trial despite a number of pharmacological studies that have proven its effectiveness as an antioxidant, analgesic, antidiabetic, antiproliferative, chemopreventive, radioprotective, cardiotonic, immunomodulatory, and diuretic. For centuries in the traditional practice of medicine in India and China the use of plants containing mangiferin has been a major component for disease management and health benefits. While it resembles biflavones, the C-glucosyl xanthone (mangiferin) has great nutritional and medicinal significance due to its unique structural characteristics. The C-glycoside link of mangiferin, mimicked to nucleophilic phloroglucinol substitution, facilitates its bioavailability and also is responsible for its antioxidant properties. Researchers have also utilized its xanthonic framework for both pharmacophoric backbone and for its use as a substitution group for synthesis and prospects. To date more than 500 derivatives using about 80 reactions have been generated. These reactions include: lipid peroxidation, phosphorylation, glycosylation, methylation, fermentation, deglycosylation, hydrolysis, polymerization, sulfation, acylation, etherification, peroxidation among others. Multiple studies on efficacy and safety have increased the global demand of mangiferin-based food supplements. This review highlights the distribution of mangiferin in plants, its isolation, and assay methods applicable to different sample matrices. In addition we include updates on various strategies and derived products intended for designated pharmacological actions. © 2016 BioFactors, 42(5):504-514, 2016.


Asunto(s)
Antioxidantes/farmacología , Extractos Vegetales/farmacología , Xantonas/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Humanos , Síndrome Metabólico/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Xantonas/química , Xantonas/farmacocinética
14.
Curr Top Med Chem ; 16(18): 2043-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26876516

RESUMEN

Metals reduction into submicro/nano size through bhasma preparations for therapeutic use is well established in ancient traditional system of Indian medicines i.e. Ayurveda. Recently, nanotechnology has drawn the attention of researchers to develeope various size and shape nanoparicles / composite for number of applications.In this article, we report the enrichment of lactone enriched fraction (LEF) by liquid-liquid portioning of Vernonia cinerea metabolic extract and sysnthesis of mediated nano-gold composite (LEF-AuNPs) in single step process. The morphological characteristic based on transmission electron microscope (TEM) image analysis showed that LEF-AuNPs were predominantly nanopolygons and nanobots in shapes ranging from 50-200 nm in size. Abundance of phytochemicals in both LEF and LEF-AuNPs was dissimilar. In LEF, montanol- a diterpenoid, while in LEF-AuNPs, neophytadiene- a phytanes was the major compound. HPLC profile of relatively polar compounds also varied drastically. In-vitro biocompatibility, cytotoxicity [MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) based assay] and storage stabilitiy of LEF-AuNPs were evaluated. The moderate ability of LEF-AuNPs to restrict parasitaemia, extended mean survival time of mice infected with Plasmodium berghei and lack of any evident toxicity provides new opportunities for the safe delivery and applications of such nanocomposites in malaria therapy.


Asunto(s)
Antimaláricos/farmacología , Lactonas/química , Nanocompuestos/química , Vernonia/química , Animales , Antimaláricos/química , Antimaláricos/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Estabilidad de Medicamentos , Oro/química , Lactonas/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Masculino , Ensayo de Materiales , Medicina Ayurvédica , Nanopartículas del Metal , Ratones
15.
Sci Total Environ ; 544: 410-21, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657386

RESUMEN

Soil enzymes are crucial for soil nutrient cycling function. Understanding of the factors that control their response to major disturbances such as dumping of environmentally toxic acidic waste remains limited. We evaluated the effect of dumping of overburden (OB) and their amendments using biochar, on the resistance and resilience of soil enzyme activities involved in phosphorus, nitrogen, sulphur and carbon cycling (acid & alkaline phosphatase, urease, arylsulphatase, dehydrogenase, phenol oxidases, cellulase and ß-glucosidase). For investigation the soils treated with OB and with the mixture of OB and biochar were used for the cultivation of bacopa were used. We assessed 0 day, 45 day and 90 days activities of the target soil enzymes, available phosphorus, nitrogen, sulphur, soil organic carbon and microbial identification. The resilience and resistance index of all the treatments were calculated. We found that phyto-remediated OB-contaminated soil has its own resilience power. However, biochar addition enhanced the enzyme resistance and resilience of OB contaminated soil. In silico study indicates that biochar-Fe complex play a significant role in enzymatic activities. Overall, the results indicate a significant influence of phytoremediation and biochar addition on soil enzymatic activity that is extremely resistant to OB. This study provides insight on how biochar addition modulates soil biochemical and microbiological response to OB affected soils.


Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental/métodos , Minería , Biodegradación Ambiental , Nitrógeno , Fósforo , Suelo/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA