Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453942

RESUMEN

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Asunto(s)
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecosistema , Antifúngicos/farmacología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Actinobacteria/metabolismo , Hierro/metabolismo , Bacterias/metabolismo , Genómica , Metaboloma , Suelo
2.
Arch Microbiol ; 202(5): 1077-1084, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32030461

RESUMEN

Plant material falling into the ultra-basic (pH 11.5-11.9) springs within The Cedars, an actively serpentinizing site in Sonoma County, California, is subject to conditions that mimic the industrial pretreatment of lignocellulosic biomass for biofuel production. We sought to obtain hemicellulolytic/cellulolytic bacteria from The Cedars springs that are capable of withstanding the extreme alkaline conditions wherein calcium hydroxide-rich water removes lignin, making cell wall polysaccharides more accessible to microorganisms and their enzymes. We enriched for such bacteria by adding plant debris from the springs into a synthetic alkaline medium with ground tissue of the biofuel crop switchgrass (Panicum virgatum L.) as the sole source of carbon. From the enrichment culture we isolated the facultative anaerobic bacterium Cellulomonas sp. strain FA1 (NBRC 114238), which tolerates high pH and catabolizes the major plant cell wall-associated polysaccharides cellulose, pectin, and hemicellulose. Strain FA1 in monoculture colonized the plant material and degraded switchgrass at a faster rate than the community from which it was derived. Cells of strain FA1 could be acclimated through subculturing to grow at a maximal concentration of 13.4% ethanol. A strain FA1-encoded ß-1, 4-endoxylanase expressed in E. coli was active at a broad pH range, displaying near maximal activity at pH 6-9. Discovery of this bacterium illustrates the value of extreme alkaline springs in the search for microorganisms with potential for consolidated bioprocessing of plant biomass to biofuels and other valuable bio-inspired products.


Asunto(s)
Biocombustibles/microbiología , Cellulomonas/aislamiento & purificación , Cellulomonas/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Lignina/metabolismo , Composición de Base/genética , Biomasa , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Panicum/química , Panicum/genética , Panicum/metabolismo , Pectinas/metabolismo , Filogenia , Plantas/metabolismo , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA