Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Pharm ; 653: 123888, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38342325

RESUMEN

The goal of this work was to examine the heat-sensitizing effects of Janus-coated magnetic nanoparticles (JMNPs) as a vehicle for 5-fluorouracil (5-Fu) and Quercetin (Qu) in C6 and OLN-93 cell lines. The cellular uptake of nanoparticles was evaluated using Prussian blue staining and ICP-OES after monolayer culturing of C6 (rat brain cancer cell) and OLN-93 (normal rat brain cell) cells. The cells were treated with free 5-Fu, Qu, and MJNPs loaded with Qu/5-Fu for 24 h, followed by magnetic hyperthermia under an alternating magnetic field (AMF) at a temperature of 43 °C. Using the MTT test and Flow cytometry, the C6 and OLN-93 cells were investigated after being subjected to hyperthermia with and without magnetic nanoparticles. The results of Prussian blue staining confirmed the potential of MJNPs as carriers that facilitate the uptake of drugs by cancer cells. The results showed that the combined application of Qu/5-Fu/MJNPs with hyperthermia significantly increased the amount of ROS production compared to interventions without MJNPs. The therapeutic results demonstrated that the combination of Qu/5-Fu/MJNPs with hyperthermia considerably enhanced the rate of apoptotic and necrotic cell death compared to that of interventions without MJNPs. Furthermore, MTT findings indicated that controlled exposure of Qu/5-Fu/MJNPs to AMF caused a synergistic effect. The advanced Janus magnetic nanoparticles in this study can be proposed as a promising dual drug carrier (Qu/5-Fu) and thermosensitizer platform for dual-modal synergistic cancer therapy.


Asunto(s)
Ferrocianuros , Hipertermia Inducida , Nanopartículas , Polietilenglicoles , Polietileneimina , Ratas , Animales , Nanogeles , Preparaciones de Acción Retardada , Hipertermia Inducida/métodos , Fluorouracilo , Línea Celular Tumoral , Quercetina/farmacología
2.
Sci Rep ; 13(1): 22358, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102193

RESUMEN

Malignant neoplasms are one of the main causes of death, especially in children, on a global scale, despite strenuous efforts made at advancing both diagnostic and therapeutic modalities. In this regard, a new nanocarrier Vincristine (VCR)-loaded Pluronic f127 polymer-coated magnetic nanoparticles conjugated with folic acid and transferrin (PMNP-VCR-FA-TF) were synthesized and characterized by various methods. The cytotoxicity of these nanoparticles was evaluated in vitro and ex vivo conditions. The in vitro anti-tumor effect of the nanoparticles was evaluated by colony formation assay (CFA) and reactive oxygen species (ROS) in Y79 cell line. The results showed that nanoparticles with two ligands conferred greater toxicity toward Y79 cancer cells than ARPE19 normal cells. Under an alternating magnetic field (AMF), these nanoparticles demonstrated a high specific absorption rate. The CFA and ROS results indicated that the AMF in combination with PMNP-VCR-FA-TF conferred the highest cytotoxicity toward Y79 cells compared with other groups (P < 0.05). PMNP-VCR-FA-TF could play an important role in converting externally applied radiofrequency energy into heat in cancer cells. The present study confirmed that dual targeting chemo-hyperthermia using PMNP-VCR-FA-TF was significantly more effective than hyperthermia or chemotherapy alone, providing a promising platform for precision drug delivery as an essential component in the chemotherapy of retinoblastoma.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Retinoblastoma/tratamiento farmacológico , Especies Reactivas de Oxígeno , Ácido Fólico , Transferrina , Vincristina/farmacología , Vincristina/uso terapéutico , Neoplasias de la Retina/tratamiento farmacológico , Línea Celular Tumoral
3.
Artículo en Inglés | MEDLINE | ID: mdl-37778031

RESUMEN

A pivotal cause of death in the modern world, cancer is an insidious pathology that should be diagnosed at an early stage for successful treatment. Development of therapeutic interventions with minimal invasiveness and high efficacy that can discriminate between tumor and normal cells is of particular interest to the clinical science, as they can enhance patient survival. Nanoparticles are an invaluable asset that can be adopted for development of such diagnostic and therapeutic modalities, since they come in very small sizes with modifiable surface, are highly safe and stable, and can be synthesized in a controlled fashion. To date, different nanoparticles have been incorporated into numerous modalities such as tumor-targeted therapy, thermal therapy, chemotherapy, and radiotherapy. This review article seeks to deliver a brief account of recent advances in research and application of nanoparticles in hyperthermia-based cancer therapies. The most recent investigations are summarized to highlight the latest advances in the development of combined thermo-chemo-radiotherapy, along with the challenges associated with the application of nanoparticles in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Nanomedicina , Nanopartículas/uso terapéutico , Quimioradioterapia
4.
Life Sci ; 306: 120729, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35753439

RESUMEN

AIMS: Recently, the development of new strategies in the treatment and diagnosis of cancer cells such as thermo-radiation-sensitizer and theranostic agents have received a great deal of attention. In this work, folic acid-conjugated temozolomide-loaded SPION@PEG-PBA-PEG nanoparticles (TMZ-MNP-FA NPs) were proposed for use as magnetic resonance imaging (MRI) contrast agents and to enhance the cytotoxic effects of hyperthermia and radiotherapy. MAIN METHODS: Nanoparticles were synthesized by the Nano-precipitation method and their characteristics were determined by dynamic light scattering (DLS), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). To evaluate the thermo-radio-sensitization effects of NPs, C6 cells were treated with nanoparticles for 24 h and then exposed to 6-MV X-ray radiation. After radiotherapy, the cells were subjected to an alternating magnetic field (AMF) hyperthermia. The therapeutic potential was assessed using clonogenic assay, ROS generation measurement, flow cytometry assay, and qRT-PCR analysis. Also, the diagnostic properties of the nanoparticles were assessed by MRI. KEY FINDINGS: MRI scanning indicated that nanoparticles accumulated in C6 cells could be tracked by T2-weighted MR imaging. Colony formation assay proved that TMZ-MNP-FA NPs enhanced the anti-proliferation effects of AMF by 1.94-fold compared to AMF alone (P < 0.0001). Moreover, these NPs improved the radiation effects with a dose enhancement factor of 1.65. All results showed that the combination of carrier-based chemotherapy with hyperthermia and radiotherapy caused a higher anticancer efficacy than single- or two-modality treatments. SIGNIFICANCE: The nanoparticles advanced in this study can be proposed as the promising theranostic and thermo-radio-sensitizer platform for the diagnosis and tri-modal synergistic cancer therapy.


Asunto(s)
Glioblastoma , Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Fármacos Sensibilizantes a Radiaciones , Línea Celular Tumoral , Medios de Contraste , Óxido Ferrosoférrico , Glioblastoma/terapia , Humanos , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/uso terapéutico , Polímeros , Temozolomida/farmacología , Nanomedicina Teranóstica
5.
Cell Mol Bioeng ; 14(4): 365-377, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34295445

RESUMEN

INTRODUCTION: With an emphasis on the radioresistant nature of glioblastoma cells, the aim of the present study was to evaluate the radio-thermo-sensitizing effects of PCL-PEG-coated Superparamagnetic iron oxide nanoparticles (SPIONs) as a carrier of 5-iodo-2-deoxyuridine (IUdR) in monolayer culture of U87MG human glioma cell line. METHODS: Following monolayer culture of U87MG cells, nanoparticle uptake was assessed using Prussian blue staining and ICP-OES method. The U87MG cells were treated with an appropriate concentration of free IUdR and PCL-PEG-coated SPIONs (MNPs) loaded with IUdR (IUdR/MNPs) for 24 h, subjected to hyperthermia (water bath and alternating magnetic field (AMF)) at 43 °C, and exposed to X-ray (2 Gy, 6 MV). The combined effects of hyperthermia with or without magnetic nanoparticles on radiosensitivity of the U87MG cells were evaluated using colony formation assay (CFA) and Flowcytometry. RESULTS: Prussian blue staining and ICP-OES showed that the nanoparticles were able to enter the cells. The results also indicated that IUdR/MNPs combined with X-ray radiation and hyperthermia significantly decreased the colony formation ability of monolayer cells (1.11, 1.41 fold) and increased the percentage of apoptotic (2.47, 4.1 fold) and necrotic cells (12.28, 29.34 fold), when compared to IUdR combined with X-ray and hyperthermia or IUdR/MNPs + X-ray. MTT results revealed that the presence of IUdR/MNPs significantly increased the toxicity of AMF hyperthermia compared to the water bath method. CONCLUSIONS: Our study showed that SPIONs/PCL-PEG, as a carrier of IUdR, can enhance the cytotoxic effects of radiotherapy and hyperthermia and act as a radio-thermo-sensitizing agent. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00675-y.

6.
J Neurooncol ; 152(3): 419-428, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33713248

RESUMEN

INTRODUCTION: Hyperthermia therapy (HT) is a recognized treatment modality, that can sensitize tumors to the effects of radiotherapy (RT) and chemotherapy by heating up tumor cells to 40-45 °C. The advantages of noninvasive inductive magnetic hyperthermia (MH) over RT or chemotherapy in the treatment of recurrent/progressive glioma have been confirmed by several clinical trials. Thus, here we have conducted a systematic review to provide a concise, albeit brief, account of the currently available literature regarding this topic. METHODS: Five databases, PubMed/Medline, Embace, Ovid, WOS, and Scopus, were investigated to identify clinical studies comparing overall survival (OS) following RT/chemotherapy versus RT/chemotherapy + MH. RESULTS: Eleven articles were selected for this systematic review, including reports on 227 glioma patients who met the study inclusion criteria. The papers included in this review comprised nine pilot clinical trials, one non-randomized clinical trial, and one retrospective investigation. As the clinical trials suggested, MH improved OS in primary glioblastoma (GBM), however, in the case of recurrent glioblastoma, no significant change in OS was reported. All 11 studies ascertained that no major side effects were observed during MH therapy. CONCLUSION: Our systematic review indicates that MH therapy as an adjuvant for RT could result in improved survival, compared to the therapeutic outcomes achieved with RT alone in GBM, especially by intratumoral injection of magnetic nanoparticles. However, heterogeneity in the methodology of the most well-known studies, and differences in the study design may significantly limit the extent to which conclusions can be drawn. Thus, further investigations are required to shed more light on the efficacy of MH therapy as an adjuvant treatment modality in GBM.


Asunto(s)
Glioblastoma , Hipertermia Inducida , Glioblastoma/terapia , Glioma/terapia , Humanos , Fenómenos Magnéticos , Recurrencia Local de Neoplasia/terapia , Estudios Retrospectivos
7.
Lasers Med Sci ; 36(5): 1067-1075, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32968961

RESUMEN

The effects of new treatments must be investigated in vitro before using clinically or in vivo. The aim of this study was to introduce the Z-scan technique as a fast, accurate, inexpensive, and safe in vitro method to distinguish the cytotoxic effects of various treatments. C6 and OLN-93 cell lines were prepared and treated with Temozolomide (TMZ), radiofrequency hyperthermia (HT), and chemo-hyperthermia (HT+TMZ). The cytotoxic effects of different treatments on both cell lines were evaluated using colony formation assay and Z-scan method. The results of colony assay showed that the surviving fraction (SF) of C6 cells treated with TMZ, HT, and HT + TMZ were significantly decreased compared to the control group. Whereas, hyperthermia treatment had no significant effect on the SF of OLN-93 cells. The results of Z-scan technique indicated that the control group of C6 cells had the negative nonlinear refractive index (n2). Whereas, the C6 cells treated with HT, TMZ, and HT + TMZ had the positive n2 index. The sign of n2 index in the control and HT groups of OLN-93 cells was positive but treatment of cells with TMZ and HT + TMZ changed the sign of it. Moreover, with increasing the cytotoxic effects of different treatments, the SF value of both cell lines decreased and the magnitude of n2 index increased. The results of Z-scan technique were completely in line with the results of colony assay. Therefore, Z-scan method could distinguish the cytotoxic effects of various treatments by examining the nonlinear optical properties of the samples.


Asunto(s)
Hipertermia Inducida , Dinámicas no Lineales , Fenómenos Ópticos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico
8.
Anticancer Agents Med Chem ; 20(3): 315-324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31840615

RESUMEN

BACKGROUND AND OBJECTIVE: Prostate cancer is the second cause of death in men worldwide. In this study, the cytotoxic effects of PLGA polymer-coated gold Magnetic Nanoparticles (MGNPs), as a novel treatment to enhance radiation and thermal sensitivity in the presence of hyperthermia (43°C) and electron beam, on DU145 prostate cancer cells were investigated. METHODS: Nanoparticles were characterized using TEM, DLS, XRD and SAED methods. MGNPs entrance into the cells was determined using Prussian blue staining and TEM. Furthermore, the cytotoxic effects of combinatorial treatment modalities were assessed by applying colony and sphere formation assay. RESULTS: Our results revealed that the decrease of colony and sphere numbers after combinatorial treatment of hyperthermia and radiation in the presence of nanoparticles was significantly higher than the other treatment groups (P<0.05). This treatment method proved that it has the capability of eliminating most of the DU145 cells (80-100%), and increased the value of the linear parameter (α) to 4.86 times. CONCLUSION: According to the study, magnetic gold nanoparticles, in addition to having a high atomic number, can effectively transmit heat produced inside them to the adjacent regions under hyperthermia, which increases the effects of radio-thermosensitivity, respectively.


Asunto(s)
Antineoplásicos/química , Oro/química , Nanopartículas de Magnetita/química , Neoplasias de la Próstata/radioterapia , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Humanos , Hipertermia Inducida , Masculino , Fototerapia , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Propiedades de Superficie
9.
Cancer Chemother Pharmacol ; 84(6): 1315-1321, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31559450

RESUMEN

PURPOSE: The aim of the present study was to develop a new strategy for combined thermo-chemotherapy of cancer. For this purpose, we used ultrasound waves [1 MHz; 1 W/cm2; 10 min] in combination with a sonosensitizing nanoplatform, named ACA, made of alginate co-loaded with cisplatin and gold nanoparticles (AuNPs). METHODS: Various combinatorial treatment regimens consisting of ultrasound, AuNPs, cisplatin, and ACA nanoplatform were studied in vivo. The CT26 colon adenocarcinoma cell line was used for tumor induction in BALB/c mice. During the ultrasound exposure, we monitored the temperature variations in each treatment group using infrared thermal imaging. Furthermore, tumor metabolism was assessed by [18F]FDG (2-deoxy-2-[18F]fluoro-D-glucose)-positron emission tomography (PET) imaging. RESULTS: The combination of ultrasound with nanoplatform showed an improved therapeutic efficacy than free cisplatin or ultrasound alone. It was revealed that the examined thermo-chemotherapy protocol has the potential to intensively decrease the metabolic activity of CT26 tumors. CONCLUSIONS: The data obtained in this study confirmed a potent anti-tumor efficacy caused by the ACA nanoplatform and ultrasound combination. It may provide a beneficial cancer therapy strategy in which the thermal and mechanical effects of ultrasound can intensify the therapeutic ratio of conventional chemotherapy methods.


Asunto(s)
Cisplatino/administración & dosificación , Portadores de Fármacos/efectos de la radiación , Hipertermia Inducida/métodos , Neoplasias/terapia , Terapia por Ultrasonido/métodos , Alginatos/química , Animales , Línea Celular Tumoral , Terapia Combinada/métodos , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Fluorodesoxiglucosa F18/administración & dosificación , Oro/química , Humanos , Masculino , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Tomografía de Emisión de Positrones/métodos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Photochem Photobiol B ; 199: 111599, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31470271

RESUMEN

Despite the immense benefits of nanoparticle-assisted photothermal therapy (NPTT) in cancer treatment, the limited method and device for detecting temperature during heat operation significantly hinder its overall progress. Development of a pre-treatment planning tool for prediction of temperature distribution would greatly improve the accuracy and safety of heat delivery during NPTT. Reliable simulation of NPTT highly relies on accurate geometrical model description of tumor and determining the spatial location of nanoparticles within the tissue. The aim of this study is to develop a computational modeling method for simulation of NPTT by exploiting the theranostic potential of iron oxide­gold hybrid nanoparticles (IO@Au) that enable NPTT under magnetic resonance imaging (MRI) guidance. To this end, CT26 colon tumor-bearing mice were injected with IO@Au nanohybrid and underwent MR imaging. The geometrical model description of tumor and nanoparticle distribution map were obtained from MR image of the tumor and involved in finite element simulation of heat transfer process. The experimental measurement of tumor temperature confirmed the validity of the model to predict temperature distribution. The constructed model can help to predict temperature distribution during NPTT and then allows to optimize the heating protocol by adjusting the treatment parameters prior to the actual treatment operation.


Asunto(s)
Antineoplásicos/química , Compuestos Férricos/química , Oro/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Animales , Línea Celular Tumoral , Análisis de Elementos Finitos , Calor , Hipertermia Inducida , Masculino , Ratones Endogámicos BALB C , Modelos Biológicos , Tamaño de la Partícula , Fototerapia , Nanomedicina Teranóstica , Distribución Tisular
11.
Mater Sci Eng C Mater Biol Appl ; 101: 575-587, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31029351

RESUMEN

Localized hyperthermia and the targeted release of the chemotherapy drug are one of the most challenging problems in chemo-hyperthermia therapy. In the present study, magnetite nanoparticles as a carrier of Temozolomide (TMZ) functionalized with folic acid-ligand (TMZ-MNP-FA) were designed and developed for targeted chemotherapy and radiofrequency hyperthermia of cancer cells. Nanoparticles were synthesized and characterized for hydrodynamic diameter, zeta potential, morphology, drug loading capacity, and in vitro RF-triggered release. Their cytotoxicity and efficacy as targeted drug delivery systems were evaluated in both cancer and normal cells and the therapeutic efficacy was analyzed on the C6 glioblastoma cancer cells. The C6 cells were treated with the nanoparticles and subjected to an alternating magnetic field (AMF) to reach a typical hyperthermia temperature of 43 °C. Then induction of apoptotic cells and the proliferation capacity of cancer cells were evaluated. The in vitro release studies exhibited that the drug release from TMZ-loaded magnetite nanoparticles was minimal at 37 °C but was noticeably boosted under an AMF irradiation. The developed targeted magnetite nanoparticles revealed higher cytotoxic effect and cellular uptake in folate-receptor overexpressing C6 cancer cells compared to OLN-93 normal cells. All results showed that combined magnetite chemo-hyperthermia (AMF + TMZ-MNP-FA) treatment was significantly more efficacious in cancer cells than hyperthermia, chemotherapy, or chemo-hyperthermia treatments (P < 0.0001). In conclusion, TMZ-MNP-FA had a key role to convert the externally delivered radiofrequency energy to heat in cancer cells. Additionally, localized hyperthermia triggered a TMZ release from the nanocarriers that resulted in cancer cell damage with synchronizing hyperthermia and chemotherapy.


Asunto(s)
Hipertermia Inducida/métodos , Nanopartículas de Magnetita/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico/química , Glioblastoma , Humanos , Magnetismo , Temozolomida/química , Temozolomida/farmacología
12.
Lasers Med Sci ; 34(8): 1627-1635, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30859420

RESUMEN

Hyperthermia treatment can induce component changes on cell. This study explored the potential of Z-scan to improve accuracy in the identification of subtle differences in mouse colon cancer cell line CT26 during hyperthermia treatment. Twenty-one samples were subjected individually to treatment of hyperthermia at 41, 43, and 45 °C. Each hyperthermia treatment was done in six different time (15, 30, 45, 60, 75, and 90 min). Two optical setups were used to investigate the linear and nonlinear optical behavior of samples. Prior to the Z-scan technique, all samples were fixed with 1 mL of 5% paraformaldehyde. The linear optical setup indicated that extinction coefficient cannot monitor cell changes at different treatment regimes. But the nonlinear behavior of CT26 in all hyperthermia treatment regimens was different. By increasing the time and/or temperature of hyperthermia treatments, change in the sign of nonlinear refractive index from negative to positive occurred in earlier time intervals. This phenomenon was seen for 41, 43, and 45 °C in 75, 60, and 45 min, respectively. The results showed that the Z-scan technique is a reliable method with the potential to characterize cell changes during hyperthermia treatment regimes. Nonlinear refractive index can be used as a new index for evaluation of cell damage.


Asunto(s)
Neoplasias del Colon/patología , Hipertermia Inducida , Dinámicas no Lineales , Fenómenos Ópticos , Animales , Línea Celular Tumoral , Ratones , Refractometría
13.
Int J Radiat Biol ; 95(2): 193-200, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30359146

RESUMEN

PURPOSE: The aim of this study was the evaluation of induced DNA damages of human prostate cancer cells, DU-145, treated with a combination of radiofrequency capacitive hyperthermia (HT) and teletherapy (EBRT) compared to a combination of teletherapy with high-dose rate brachytherapy (BR). MATERIALS AND METHODS: DU-145 cells were cultured as spheroids in 300 micron diameter. Then the following treatments were conducted: (a) EBRT at doses of either 2 Gy or 4 Gy of photon 15 MV, (b) HT for 0, 30, 60, and 90 minutes duration at 43 °C from a 13.56 MHz radiofrequency capacitive heating device (Celsius TCS), (c) BR with Ir-192 seed at doses of either 2 Gy or 5.5 Gy, (d) The mentioned HT followed by EBRT (HT + EBRT) and (e) EBRT followed by BR (EBRT + BR). Alkaline comet assay was performed to measure tail moment. RESULTS: The induced DNA damages of DU-145 cells treated by adding HT to EBRT compared with EBRT alone, showed a significant enhancement; 3.28 and 5.14 times respectively for 30 and 60 minutes HT. By plotting dose-response curves, we could find a range of doses, which create radiobiological iso-effect in HT + EBRT and EBRT + BR treatments. CONCLUSIONS: This study suggests that about DNA damages of DU-145 cells, HT + EBRT could partly be considered as an alternative to EBRT + BR.


Asunto(s)
Braquiterapia , Daño del ADN , Hipertermia Inducida/métodos , Neoplasias de la Próstata/radioterapia , Teleterapia por Radioisótopo , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Humanos , Masculino , Neoplasias de la Próstata/genética
14.
Int J Radiat Biol ; 94(11): 1027-1037, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29985733

RESUMEN

PURPOSE: Glioblastoma multiform (GBM) is the most prevalent and aggressive type of primary brain tumor. None of the current conventional treatment methods has improved treatment considerably. Therefore, in this study the effect of magnetic nanoparticles coated with poly (caprolactone)-poly (ethylene glycol) (PCL-PEG) as a 5-iodo 2'deoxyuridine (IUdR) carrier in the presence of hyperthermia and 6 MV (megavoltage) X-ray radiation, were investigated in a spheroid model of U87MG glioblastoma cell line using colony formation assay. MATERIALS AND METHODS: First, the human glioblastoma cell line U87MG was cultured as a spheroid using the liquid overlay technique. Spheroids on day 10 with 100 mm diameters were treated with 1 µM IUdR or nanoparticles as IUdR carriers for one volume doubling time (VDT) of spheroids (67 h) and hyperthermia at 43 °C for 1 h, and then irradiated with 2 Gy of 6 MV X-ray in different groups. Finally, the effect of treatment on colony-forming ability was obtained by colony formation and alkaline assay. RESULTS: Our results revealed that hyperthermia in combination with radiation could significantly reduce the colony number of glioblastoma spheroid cells treated with IUdR or nanoparticles as IUdR carriers. However, the extent of reduction in colony number following treatment with IUdR-loaded nanoparticles in combination with hyperthermia and then X-ray radiation was significantly more than free IUdR. CONCLUSION: According to this study, PCL-PEG-coated magnetic nanoparticles are effective delivery vehicles for IUdR into cells. Moreover, they can act as a radiosensitizer and thermosensitizer in the treatment of the glioblastoma cell line.


Asunto(s)
Portadores de Fármacos/química , Glioblastoma/patología , Hipertermia Inducida , Idoxuridina/análogos & derivados , Nanopartículas de Magnetita/química , Poliésteres/química , Polietilenglicoles/química , Transporte Biológico , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Terapia Combinada , Portadores de Fármacos/metabolismo , Glioblastoma/radioterapia , Humanos , Idoxuridina/química , Tamaño de la Partícula , Esferoides Celulares/patología , Esferoides Celulares/efectos de la radiación
15.
Radiat Environ Biophys ; 57(2): 133-142, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29453555

RESUMEN

The aim of this study was to investigate the effect of hyperthermia, 6 MeV electron radiation and combination of these treatments on cancer cell line DU145 in both monolayer culture and spheroids enriched for prostate cancer stem cells (CSCs). Flowcytometric analysis of the expression of molecular markers CD133+/CD44+ was carried out to determine the prostate CSCs in cell line DU145 grown as spheroids in serum-free medium. Following monolayer and spheroid culture, DU145 cells were treated with different doses of hyperthermia, electron beam and combination of them. The survival and self-renewing of the cells were evaluated by colony formation assay (CFA) and spheroid formation assay (SFA). Flowcytometry results indicated that the percentage of CD133+/CD44+ cells in spheroid culture was 13.9-fold higher than in the monolayer culture. The SFA showed significant difference between monolayer and spheroid culture for radiation treatment (6 Gy) and hyperthermia (60 and 90 min). The CFA showed significantly enhanced radiosensitivity in DU145 cells grown as monolayer as compared to spheroids, but no effect of hyperthermia. In contrast, for the combination of radiation and hyperthermia the results of CFA and SFA showed a reduced survival fraction in both cultures, with larger effects in monolayer than in spheroid culture. Thus, hyperthermia may be a promising approach in prostate cancer treatment that enhances the cytotoxic effect of electron radiation. Furthermore, determination and characterization of radioresistance and thermoresistance of CSCs in the prostate tumor is the key to develop more efficient therapeutic strategies.


Asunto(s)
Electrones/uso terapéutico , Hipertermia Inducida , Células Madre Neoplásicas/efectos de la radiación , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/terapia , Esferoides Celulares/efectos de la radiación
16.
Int J Radiat Biol ; 93(11): 1248-1256, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28738712

RESUMEN

PURPOSE: Hyperthermia and radiation have the ability to induce structural and morphological changes on both macroscopic and microscopic level. Normal and damage cells have a different texture but may be perceived by human eye, as having the same texture. MATERIALS AND METHODS: To explore the potential of texture analysis based on run-length matrix, a total of 32 sphere images for each group and treatment regime were used in this study. Cells were subjected to the treatment with different doses of 6 MeV electron radiation (0 2, 4 and 6 Gy), hyperthermia (at 43° C in 0, 30, 60 and 90 min) and radiation + hyperthermia (at 43 °C in 30 min with 2, 4 and 6 Gy dose), respectively. Twenty run-length matrix (RLM) features were extracted as descriptors for each selected region of interest for texture analysis. Linear discriminant analysis was employed to transform raw data to lower-dimensional spaces and increase discriminative power. RESULTS: The features were classified by the first nearest neighbor classifier. RLM features represented the best performance with sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of 100% between 0 and 6 Gy radiation, 0 and 6 Gy radiation + hyperthermia, 0 and 90 min and 30 and 90 min hyperthermia groups. The area under receiver operating characteristic curve was 1 for these groups. CONCLUSION: RLM features have a high potential to characterize cell changes during different treatment regimes.


Asunto(s)
Hipertermia Inducida , Microscopía , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/terapia
17.
Iran Biomed J ; 12(3): 167-72, 2008 07.
Artículo en Inglés | MEDLINE | ID: mdl-18762820

RESUMEN

BACKGROUND: Pectic acid extracted from plants increases the secretion of prolactin (PRL) when injected intravenously into ewes or fed to rats. Fragments of ewe hypophysis and lactating rabbit mammary gland incubated in vitro in the presence of pectic acid secreted more PRL and caseins compared to the controls. However, it is not known whether pectic acid directly stimulates PRL secretion in pituitary or interference of factors from hypophysis is required for this process. METHODS: GH3/B6 cells, a clonal strain of rat pituitary, were cultured and incubated with pectic acid (2.5-100 microg/mL). The integrity of cells was examined under pectic acid treatment microscopically. Controls or pectic acid treated cells were assayed for their ability to produce PRL. The PRL was assayed by Western-blotting and Radioimmunoassay. RESULTS: pectic acid did not have any significant effect on the viability of cells. After being incubated with pectic acid, the cells started to become circular and protuberant shape. The maximum stimulation and PRL secretion occurred at 100 microg/mL concentration within 30 min of incubation with pectic acid. CONCLUSION: pectic acid could stimulate the release of PRL in GH3/B6 cells in the short-term incubation. This result suggested that pectic acid is a non-toxic agent that could directly stimulate PRL secretion in pituitary cells without any interference of hypophysis.


Asunto(s)
Pectinas/farmacología , Hipófisis/citología , Hipófisis/metabolismo , Prolactina/metabolismo , Animales , Western Blotting , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , HEPES/farmacología , Hipófisis/efectos de los fármacos , Conejos , Radioinmunoensayo , Ratas , Hormona Liberadora de Tirotropina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA