RESUMEN
Prasiola japonica possesses several biological activities. However, reports on the anti-inflammatory activities and molecular mechanisms of its different solvent fractions remain limited. In this study, we investigated the potential anti-inflammatory activities of P. japonica ethanol extract (Pj-EE) and four solvent fractions of Pj-EE made with hexane (Pj-EE-HF), chloroform (Pj-EE-CF), butanol (Pj-EE-BF), or water (Pj-EE-WF) in both in vitro (LPS-induced macrophage-like RAW264.7 cells) and in vivo (carrageenan-induced acute paw edema mouse models) experiments. The most active solvent fraction was selected for further analysis. Various in vitro and in vivo assessments, including nitric oxide (NO), cytokines, luciferase assays, real-time polymerase chain reactions, and immunoblotting analyses were performed to evaluate the underlying mechanisms. In addition, the phytochemical constituents were characterized by Liquid chromatography-tandem mass spectrometry. In in vitro studies, the highest inhibition of NO production was observed in Pj-EE-CF. Further examination revealed that Pj-EE-CF decreased the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells and suppressed subsequent AP-1-luciferase activity by inhibition of phosphorylation events in the AP-1 signaling pathway. Pj-EE-CF treatment also demonstrated the strongest reduction in thickness and volume of carrageenan-induced paw edema, while Pj-EE-BF showed the lowest activity. Furthermore, Pj-EE-CF also reduced gene expression and cytokines production in tissue lysates of carrageenan-induced paw edema. These findings support and validate the evidence that Pj-EE, and especially Pj-EE-CF, could be a good natural source for an anti-inflammatory agent that targets the AP1 pathway.
Asunto(s)
Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Chlorophyta/química , Edema/tratamiento farmacológico , Edema/etiología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Biomarcadores , Carragenina/efectos adversos , Fraccionamiento Químico/métodos , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Edema/metabolismo , Edema/patología , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/efectos adversos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Células RAW 264.7 , SolventesRESUMEN
Skin is the outer tissue layer and is a barrier protecting the body from various external stresses. The fresh water green edible algae Prasiola japonica has antiviral, antimicrobial, and anti-inflammatory properties; however, few studies of its effects on skin-protection have been reported. In this study, Prasiola japonica ethanol extract (Pj-EE) was prepared, and its skin-protective properties were investigated in skin keratinocytes. Pj-EE inhibited ROS production in UVB-irradiated HaCaT cells without cytotoxicity. Pj-EE also suppressed the apoptotic death of UVB-irradiated HaCaT cells by decreasing the generation of apoptotic bodies and the proteolytic activation of apoptosis caspase-3, -8, and -9. Moreover, Pj-EE downregulated the mRNA expression of the inflammatory gene cyclooxygenase-2 (COX-2), the pro-inflammatory cytokine genes interleukin (IL)-1ß, IL-8, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, and the tissue remodeling genes matrix metalloproteinase (MMP)-1, -2, -3, and -9. The Pj-EE-induced anti-inflammatory effect was mediated by suppressing the activation of nuclear factor-kappa B (NF-κB) signaling pathway in the UVB-irradiated HaCaT cells. Taken together, these results suggest that Pj-EE exerts skin-protective effects through anti-oxidant, anti-apoptotic, and anti-inflammatory activities in skin keratinocytes.
Asunto(s)
Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Chlorophyta/química , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Piel/efectos de la radiación , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Queratinocitos/citología , Queratinocitos/inmunología , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/inmunología , FN-kappa B/genética , FN-kappa B/inmunología , Sustancias Protectoras/farmacología , Piel/citología , Piel/inmunología , Rayos UltravioletaRESUMEN
The aim of this study was to investigate the cytoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)-induced cell damage in human keratinocytes (HaCaT cells). SME exhibited scavenging activity toward the 1,1-diphenyl-2-picrylhydrazyl radicals and hydrogen peroxide (H(2)O(2)) and UVB-induced intracellular reactive oxygen species (ROS). SME also scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO(4) + H(2)O(2)), which was detected using electron spin resonance spectrometry. In addition, SME decreased the level of lipid peroxidation that was increased by UVB radiation, and restored the level of protein expression and the activities of antioxidant enzymes that were decreased by UVB radiation. Furthermore, SME reduced UVB-induced apoptosis as shown by decreased DNA fragmentation and numbers of apoptotic bodies. These results suggest that SME protects human keratinocytes against UVB-induced oxidative stress by enhancing antioxidant activity in cells, thereby inhibiting apoptosis.
Asunto(s)
Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Extractos Vegetales/farmacología , Protectores contra Radiación/farmacología , Sargassum/química , Rayos Ultravioleta/efectos adversos , Acetatos , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/metabolismo , Catalasa/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Picratos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
Seaweed has been used in traditional cosmetics and as a herbal medicine in treatments for cough, boils, goiters, stomach ailments, and urinary diseases, and for reducing the incidence of tumors, ulcers, and headaches. Despite the fact that seaweeds are frequently used in the practice of human health, little is known about the role of seaweed in the context of inflammation. This study aimed to investigate the influence of Jeju endemic seaweed on a mouse macrophage cell line (RAW 264.7) under the stimulation of lipopolysaccharide (LPS). Ethyl acetate extracts obtained from 14 different kinds of Jeju seaweeds were screened for inhibitory effects on pro-inflammatory mediators. Our results revealed that extracts from five seaweeds, Laurencia okamurae, Grateloupia elliptica, Sargassum thunbergii, Gloiopeltis furcata, and Hizikia fusiformis, were potent inhibitors of the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). Based on these results, the anti-inflammatory effects and low cell toxicity of these seaweed extracts suggest potential therapeutic applications in the regulation of the inflammatory response.