Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 231(Pt 1): 115862, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146933

RESUMEN

Cancer is a major global public health concern that affects both industrialized and developing nations. Current cancer chemotherapeutic options are limited by side effects, but plant-derived alternatives and their derivatives offer the possibilities of enhanced treatment response and reduced side effects. A plethora of recently published articles have focused on treatments based on cannabinoids and cannabinoid analogs and reported that they positively affect healthy cell growth and reverse cancer-related abnormalities by targeting aberrant tumor microenvironments (TMEs), lowering tumorigenesis, preventing metastasis, and/or boosting the effectiveness of chemotherapy and radiotherapy. Furthermore, TME modulating systems are receiving much interest in the cancer immunotherapy field because it has been shown that TMEs have significant impacts on tumor progression, angiogenesis, invasion, migration, epithelial to mesenchymal transition, metastasis and development of drug resistance. Here, we have reviewed the effective role of cannabinoids, their analogs and cannabinoid nano formulations on the cellular components of TME (endothelial cells, pericytes, fibroblast and immune cells) and how efficiently it retards the progression of carcinogenesis is discussed. The article summarizes the existing research on the molecular mechanisms of cannabinoids regulation of the TME and finally highlights the human studies on cannabinoids' active interventional clinical trials. The conclusion outlines the need for future research involving clinical trials of cannabinoids to demonstrate their efficacy and activity as a treatment/prevention for various types of human malignancies.


Asunto(s)
Cannabinoides , Neoplasias , Humanos , Cannabinoides/farmacología , Células Endoteliales , Transición Epitelial-Mesenquimal , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Ensayos Clínicos como Asunto
2.
J Ethnopharmacol ; 308: 116267, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36796742

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Red clover (Trifolium pratense L.) is a traditional Chinese medicine and use as herbal medicine which has the effects of regulating menopausal symptoms, heart problem, inflammatory disease, psoriasis and cognitive deficits. In previous reported, the studies of red clover were mainly focused on clinical practice. the pharmacological functions of red clover not fully elucidated. AIM OF THE STUDY: To identify the molecules that regulate ferroptosis, we examined whether red clover (Trifolium pratense L.) extracts (RCE) affected ferroptosis induced by chemical treatment or cystine/glutamate antiporter (xCT) deficiency. MATERIALS AND METHODS: Cellular models for ferroptosis were induced by erastin/Ras-selectiv lethal 3 (RSL3) treatment or xCT deficiency in mouse embryonic fibroblasts (MEFs). Intracellular iron and peroxidized lipid levels were determined using Calcein-AM and BODIPY-C11 fluorescence dyes, respectively. Protein and mRNA were quantified by Western blot and real-time polymerase chain reaction, respectively. RNA sequencing analysis was performed on xCT-/- MEFs. RESULTS: RCE significantly suppressed ferroptosis induced by both erastin/RSL3 treatment and xCT deficiency. The anti-ferroptotic effects of RCE correlated to ferroptotic phenotypic changes such as cellular iron accumulation and lipid peroxidation in cellular ferroptosis models. Importantly, RCE affected levels of iron metabolism-related proteins including iron regulatory protein 1, ferroportin 1 (FPN1), divalent metal transporter 1, and transferrin receptor. RNA sequencing analysis of xCT-/- MEFs identified that expression of cellular defense genes was upregulated, while expression of cell death-related genes was downregulated, by RCE. CONCLUSION: RCE potently suppressed ferroptosis triggered both by erastin/RSL3 treatment and xCT deficiency by modulating cellular iron homeostasis. This is the first report that RCE has therapeutic potential in diseases associated with ferroptotic cell death, particularly ferroptosis induced by dysregulation of cellular iron metabolism.


Asunto(s)
Trifolium , Animales , Ratones , Trifolium/metabolismo , Línea Celular Tumoral , Fibroblastos/metabolismo , Muerte Celular , Hierro/metabolismo , Homeostasis
3.
Phytomedicine ; 91: 153698, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34479785

RESUMEN

BACKGROUND: Cancer is the most dreadful disease increasing rapidly causing an economic burden globally. A standardized chemotherapy regimen planned with curative intent weakens the immune system and damages healthy cells making the patient prone to infections and severe side effects with pain and fatigue. PURPOSE: Astragalus membranaceus (AM) has a long history of use in the treatment of severe adverse diseases. For thousands of years, it has been used in mixed herbal decoctions for the treatment of cancer. Due to growing interest in this plant root for its application to treat various types of cancers and tumors, has attracted researcher's interest. METHOD: The literature search was done from core collections of electronic databases such as Web of Science, Google Scholar, PubMed and Science Direct using keywords given below and terms like pharmacological and phytochemical details of this plant. OUTCOME: Astragalus membranaceus has demonstrated the ability to modulate the immune system during drug therapy making the patient physically fit and prolonged life. It has become a buzzword of herbalists as it is one of the best of seven important adaptogenic herbs with a protective effect against chronic stress and cancer. It demonstrated significant amelioration of the perilous toxic effects induced by concurrently administered chemo onco-drugs. CONCLUSION: The natural phytoconstituents of this plant formononetin, astragalus polysaccharide, and astragalosides which show high potential anti-cancerous activity are studied and discussed in detail. One of them are used in clinical trials to overcome cancer related fatigue. Overall, this review aims to provide an insight into Astragalus membranaceus status in cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Astragalus propinquus/química , Neoplasias , Fitoquímicos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Polisacáridos
4.
J Food Biochem ; 45(7): e13805, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096077

RESUMEN

High mobility group box 1 (HMGB1) is a well-defined mediator involved in the pathophysiologic response to endotoxemia and sepsis. However, the mechanisms and therapeutic agents that could prevent its release are not fully elucidated. Here, the present study demonstrates that the ginseng leaf extract (GLE) regulates lipopolysaccharide (LPS)-triggered release of HMGB1 in macrophages and endotoxemic animal model. Treatment of RAW264.7 macrophages with GLE significantly inhibited the release of HMGB1 stimulated by LPS. GLE also suppressed the generation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of GLE were accompanied by inhibition of HMGB1 release stimulated by LPS, indicating a potential mechanism by which GLE regulates HMGB1 release through NO signaling. Furthermore, induction of suppressor of cytokine signaling 1 by GLE-mediated GLE-dependent suppression of HMGB1 release and NO/iNOS induction by inhibiting Janus kinase 2/signal transducer and activator of transcription 1 signal in RAW 264.7 cells exposed to LPS. Finally, administration of the GLE ameliorated the survival rate of LPS-injected endotoxemic mice in a NO-dependent manner. Thus, GLE may block the LPS-stimulated release of HMGB1 by regulating cellular signal networks, thereby providing a therapeutic strategy for endotoxemia as a functional food. PRACTICAL APPLICATIONS: High mobility group box 1 (HMGB1) is released into the extracellular milieu when immune cells are exposed to pathogen-related molecules such as lipopolysaccharide (LPS), in which it acts as a critical mediator of lethality in sepsis and endotoxemia. The extract of ginseng leaf, which is a part that can be easily thrown away, ameliorated the survival rate of endotoxemic mice by inhibiting HMGB1 secretion in a NO-dependent manner. Thus, this study suggests that ginseng leaf can be used as a functional food by resolving the immune responses in the pathology of endotoxemia.


Asunto(s)
Endotoxemia , Proteína HMGB1 , Panax , Animales , Endotoxemia/inducido químicamente , Endotoxemia/tratamiento farmacológico , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Células RAW 264.7
5.
Molecules ; 25(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906464

RESUMEN

Ginsenosides are active components found abundantly in ginseng which has been used as a medicinal herb to modify disease status for thousands of years. However, the pharmacological activity of ginsenoside Re in the neuronal system remains to be elucidated. Neuroprotective activity of ginsenoside Re was investigated in SH-SY5Y cells exposed to 6-hydroxydopamine (6-OHDA) to induce cellular injury. Ginsenoside Re significantly inhibited 6-OHDA-triggered cellular damage as judged by analysis of tetrazolium dye reduction and lactose dehydrogenase release. In addition, ginsenoside Re induced the expression of the antioxidant protein glutathione peroxidase 4 (GPX4) but not catalase, glutathione peroxidase 1, glutathione reductase, or superoxide dismutase-1. Furthermore, upregulation of GPX4 by ginsenoside Re was mediated by phosphoinositide 3-kinase and extracellular signal-regulated kinase but not by p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Ginsenoside Re also suppressed 6-OHDA-triggered cellular accumulation of reactive oxygen species and peroxidation of membrane lipids. The GPX4 inhibitor (1S,3R)-RSL3 reversed ginsenoside Re-mediated inhibition of cellular damage in SH-SY5Y cells exposed to 6-OHDA, indicating that the neuronal activity of ginsenoside Re is due to upregulation of GPX4. These findings suggest that ginsenoside Re-dependent upregulation of GPX4 reduces oxidative stress and thereby alleviates 6-OHDA-induced neuronal damage.


Asunto(s)
Ginsenósidos/farmacología , Oxidopamina/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/metabolismo , Glutatión Peroxidasa GPX1
6.
Molecules ; 20(12): 22476-98, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26694334

RESUMEN

The purpose of this study was to design and synthesize Palladium nanoparticles (PdNPs) using an environmentally friendly approach and evaluate the in vitro efficacy of PdNPs in human ovarian cancer A2780 cells. Ultraviolet-Visible (UV-Vis) spectroscopy was used to monitor the conversion of Pd(II) ions to Pd(0)NPs. X-ray diffraction (XRD) revealed the crystallinity of the as-synthesized PdNPs and Fourier transform infrared spectroscopy (FTIR) further confirmed the role of the leaf extract of Evolvulus alsinoides as a reducing and stabilizing agent for the synthesis of PdNPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed that the average size of the NPs was 5 nm. After a 24-h exposure to PdNPs, cell viability and light microscopy assays revealed the dose-dependent toxicity of the PdNPs. Furthermore, the dose-dependent cytotoxicity of the PdNPs was confirmed by lactate dehydrogenase (LDH), increased reactive oxygen species (ROS) generation, activation of PdNPs-induced autophagy, impairment of mitochondrial membrane potential (MMP), enhanced caspase-3 activity, and detection of TUNEL-positive cells. Our study demonstrates a single, simple, dependable and green approach for the synthesis of PdNPs using leaf extracts of Evolvulus alsinoides. Furthermore, the in vitro efficacy of PdNPs in human ovarian cancer cells suggests that it could be an effective therapeutic agent for cancer therapy.


Asunto(s)
Antineoplásicos/síntesis química , Nanopartículas/química , Paladio/química , Antineoplásicos/farmacología , Autofagia , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Convolvulaceae/química , Ensayos de Selección de Medicamentos Antitumorales , Tecnología Química Verde , Humanos , L-Lactato Deshidrogenasa/metabolismo , Paladio/farmacología , Tamaño de la Partícula , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reductoras/química
7.
Int J Nanomedicine ; 10: 6257-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26491296

RESUMEN

BACKGROUND: Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide-silver (rGO-Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO-Ag were evaluated in ovarian cancer cells. METHODS: The synthesized rGO-Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO-Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). RESULTS: AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO-Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. CONCLUSION: T. amurensis plant extract-mediated rGO-Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO-Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be effective non-toxic therapeutic agents for the treatment of both cancer and cancer stem cells.


Asunto(s)
Grafito/administración & dosificación , Nanopartículas del Metal/química , Nanocompuestos/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Óxidos/administración & dosificación , Plata/química , Catálisis , Supervivencia Celular/efectos de los fármacos , Femenino , Grafito/química , Humanos , Etiquetado Corte-Fin in Situ , Nanocompuestos/química , Neoplasias Ováricas/patología , Óxidos/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA