Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918248

RESUMEN

Dendropanax morbifera leaves (DML) have long been used as traditional medicine to treat diverse symptoms in Korea. Ethyl acetate-soluble extracts of DML (DMLE) rescued HT22 mouse hippocampal neuronal cells from glutamate (Glu)-induced oxidative cell death; however, the protective compounds and mechanisms remain unknown. Here, we aimed to identify the neuroprotective ingredients and mechanisms of DMLE in the Glu-HT22 cell model. Five antioxidant compounds were isolated from DMLE and characterized as chlorogenic acid, hyperoside, isoquercitrin, quercetin, and rutin by spectroscopic methods. Isoquercitrin and quercetin significantly inhibited Glu-induced oxidative cell death by restoring intracellular reactive oxygen species (ROS) levels and mitochondrial superoxide generation, Ca2+ dysregulation, mitochondrial dysfunction, and nuclear translocation of apoptosis-inducing factor. These two compounds significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the presence or absence of Glu treatment. Combinatorial treatment of the five compounds based on the equivalent concentrations in DMLE showed that significant protection was found only in the cells cotreated with isoquercitrin and quercetin, both of whom showed prominent synergism, as assessed by drug-drug interaction analysis. These findings suggest that isoquercitrin and quercetin are the active principles representing the protective effects of DMLE, and these effects were mediated by the Nrf2/HO-1 pathway.

2.
Planta Med ; 83(10): 862-869, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28249301

RESUMEN

Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana. Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana. The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana. The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana-derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli-derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana-derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana-derived recombinant human acidic fibroblast growth factor effectively protects skin cell from UVB, suggesting its potential use as a cosmetic or therapeutic agent against skin photoaging.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos/farmacología , Nicotiana/genética , Envejecimiento de la Piel/efectos de los fármacos , Agrobacterium , Línea Celular , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/toxicidad , Vectores Genéticos , Humanos , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Piel/efectos de los fármacos , Piel/efectos de la radiación , Rayos Ultravioleta
3.
J Psychopharmacol ; 31(2): 250-259, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27729563

RESUMEN

Swertisin, a plant-derived C-glucosylflavone, is known to have antidiabetic, anti-inflammatory and antioxidant effects. In the present study, we investigated in mice the effects of swertisin on glutamatergic dysfunction induced by dizocilpine (MK-801), a non-competitive N-methyl-D-aspartate receptor antagonist. In the Acoustic Startle Response test, their MK-801-induced (given 0.2 mg/kg i.p.) pre-pulse inhibition deficit was significantly attenuated by the administration of swertisin (30 mg/kg p.o.). In the Novel Object Recognition Test, the recognition memory impairments that were induced by MK-801 (0.2 mg/kg, given i.p.) were also reversed by administration of swertisin (30 mg/kg p.o.). In addition, swertisin normalized the MK-801-induced elevation of phosphorylation levels of Akt and GSK-3ß signaling molecules in the prefrontal cortex. These results indicated that swertisin may be useful in managing the symptoms of schizophrenia, including sensorimotor gating disruption and cognitive impairment, and that these behavioral outcomes may be related to Akt-GSK-3ß signaling in the prefrontal cortex.


Asunto(s)
Apigenina/farmacología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Maleato de Dizocilpina/efectos adversos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Estimulación Acústica/métodos , Animales , Disfunción Cognitiva/metabolismo , Flavonoides/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Masculino , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos ICR , Fosforilación/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reflejo de Sobresalto/efectos de los fármacos , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Filtrado Sensorial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
Artículo en Inglés | MEDLINE | ID: mdl-25505922

RESUMEN

Activation of spinal glial cells plays a crucial role in the pathogenesis of neuropathic pain. An administration of oxaliplatin, an important anticancer drug, often induces acute neuropathic cold hypersensitivity and/or mechanical hypersensitivity in patients. Gyejigachulbu-tang (GBT), a herbal formula comprising Cinnamomi Cortex, Paeoniae Radix, Atractylodis Lanceae Rhizoma, Zizyphi Fructus, Glycyrrhizae Radix, Zingiberis Rhizoma, and Aconiti Tuber, has been used in East Asia to treat various pain symptoms, especially in cold patients. This study investigated whether and how GBT alleviates oxaliplatin-induced cold and mechanical hypersensitivity in rats. The behavioral signs of cold and mechanical hypersensitivity were evaluated by a tail immersion test in cold water (4°C) and a von Frey hair test, respectively. The significant cold and mechanical hypersensitivity were observed 3 days after an oxaliplatin injection (6 mg/kg, i.p.). Daily oral administration of GBT (200, 400, and 600 mg/kg) for 5 days markedly attenuated cold and mechanical hypersensitivity. Immunoreactivities of glial fibrillary acidic protein (GFAP, astrocyte marker) and OX-42 (microglia marker) in the spinal dorsal horn were significantly increased by an oxaliplatin injection, which were restored by GBT administration. These results indicate that GBT relieves oxaliplatin-induced cold and mechanical hypersensitivity in rats possibly through the suppression of spinal glial activation.

5.
J Physiol Sci ; 59(4): 291-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19343482

RESUMEN

This study was performed to determine whether spinal cholinergic systems mediate the relieving effects of electroacupuncture (EA) on cold and warm allodynia in a rat model of neuropathic pain. For neuropathic surgery, the right superior caudal trunk was resected at the level between the S1 and S2 spinal nerves innervating the tail. Two weeks after the injury, the intrathecal (i.t.) catheter was implanted. Five days after the catheterization, the rats were injected with atropine (non-selective muscarinic antagonist, 30 microg), mecamylamine (non-selective nicotinic antagonist, 50 microg), pirenzepine (M(1) muscarinic antagonist, 10 microg), methoctramine (M(2) antagonist, 10 microg) or 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) (M(3) antagonist, 10 microg). Ten minutes after the injection, EA was applied to the ST36 acupoint for 30 min. The cold and warm allodynia were assessed by the tail immersion test [i.e., immersing the tail in cold (4 degrees C) or warm (40 degrees C) water and measuring the latency of an abrupt tail movement] before and after the treatments. The i.t. atropine, but not mecamylamine, blocked the relieving effects of EA on cold and warm allodynia. Furthermore, i.t. pirenzepine attenuated the antiallodynic effects of EA, whereas methoctramine and 4-DAMP did not. These results suggest that spinal muscarinic receptors, especially M(1) subtype, mediate the EA-induced antiallodynia in neuropathic rats.


Asunto(s)
Fibras Colinérgicas/fisiología , Electroacupuntura , Neuralgia/fisiopatología , Neuralgia/terapia , Nervios Espinales/fisiopatología , Animales , Atropina/farmacología , Colinérgicos/farmacología , Fibras Colinérgicas/efectos de los fármacos , Frío , Diaminas/farmacología , Modelos Animales de Enfermedad , Calor , Hiperestesia/fisiopatología , Hiperestesia/terapia , Masculino , Mecamilamina/farmacología , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Piperidinas/farmacología , Pirenzepina/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M1/efectos de los fármacos , Receptor Muscarínico M1/fisiología , Nervios Espinales/efectos de los fármacos
6.
J Physiol Sci ; 58(5): 357-60, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18840324

RESUMEN

This study was performed to examine whether electroacupuncture potentiates the neostigmine-induced antiallodynia in neuropathic pain rats. Although intrathecal neostigmine (0.05, 0.1, and 0.3 microg) dose-dependently relieved cold allodynia, 0.3 microg neostigmine caused side effects. The coapplication of 0.1 microg neostigmine and electroacupuncture, however, produced potent antiallodynia, which was parallel to the effect of 0.3 microg neostigmine, without side effects. These results indicate that electroacupuncture can enhance the antiallodynic action of intrathecal neostigmine.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Electroacupuntura , Neostigmina/farmacología , Neuralgia/tratamiento farmacológico , Animales , Inhibidores de la Colinesterasa/toxicidad , Terapia Combinada , Modelos Animales de Enfermedad , Inyecciones Espinales , Masculino , Neostigmina/toxicidad , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA