RESUMEN
The plant Justicia procumbens is traditionally used in Asia to treat fever, cough, and pain. Previous studies have reported its anticancer and anti-asthmatic properties. However, its potential for preventing androgenic alopecia (AGA) has not yet been reported. AGA is a widespread hair loss condition primarily caused by male hormones. In this study, we examined the hair loss-preventing effects of an aqueous extract of J. procumbens (JPAE) using human hair follicle dermal papilla cell (HFDPC) and a mouse model of testosterone-induced AGA. JPAE treatment increased HFDPC proliferation by activating the Wnt/ß-catenin signaling pathway. Additionally, JPAE increased the expression of Wnt targets, such as cyclin D1 and VEGF, by promoting the translocation of ß-catenin to the nucleus. Administration of JPAE reduced hair loss, increased hair thickness, and enhanced hair shine in an AGA mouse model. Furthermore, it increased the expression of p-GSK-3ß and ß-catenin in the dorsal skin of the mice. These findings imply that JPAE promotes the proliferation of HFDPC and prevents hair loss in an AGA mouse model. JPAE can therefore be used as a functional food and natural treatment option for AGA to prevent hair loss.
Asunto(s)
Género Justicia , beta Catenina , Humanos , Ratones , Animales , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Alopecia/inducido químicamente , Alopecia/prevención & control , Alopecia/metabolismo , Cabello/metabolismo , Vía de Señalización WntRESUMEN
BACKGROUND: Geniposide (GP) is an iridoid glycoside that is present in nearly 40 species, including Gardenia jasminoides Ellis. GP has been reported to exhibit neuroprotective effects in various Alzheimer's disease (AD) models; however, the effects of GP on AD models of Caenorhabditis elegans (C. elegans) and aging-accelerated mouse predisposition-8 (SAMP8) mice have not yet been evaluated. PURPOSE: To determine whether GP improves the pathology of AD and sarcopenia. METHODS: AD models of C. elegans and SAMP8 mice were employed and subjected to behavioral analyses. Further, RT-PCR, histological analysis, and western blot analyses were performed to assess the expression of genes and proteins related to AD and muscle atrophy. RESULTS: GP treatment in the AD model of C. elegans significantly restored the observed deterioration in lifespan and motility. In SAMP8 mice, GP did not improve cognitive function deterioration by accelerated aging but ameliorated physical function deterioration. Furthermore, in differentiated C2C12 cells, GP ameliorated muscle atrophy induced by dexamethasone treatment and inhibited FoxO1 activity by activating AKT. CONCLUSION: Although GP did not improve the AD pathology in SAMP8 mice, we suggest that GP has the potential to improve muscle deterioration caused by aging. This effect of GP may be attributed to the suppression of FoxO1 activity.
Asunto(s)
Enfermedad de Alzheimer , Caenorhabditis elegans , Iridoides , Ratones , Animales , Enfermedad de Alzheimer/patología , Envejecimiento , Atrofia Muscular/tratamiento farmacológicoRESUMEN
BACKGROUND: The benefits of intraoperative magnesium supplementation have been reported. In this prospective, randomized study, the effects of magnesium supplementation during general anaesthesia on emergence delirium and postoperative pain in children were evaluated. METHODS: A total of 66 children aged 2 to 5 years who underwent strabismus surgery were assigned to the magnesium or to the control group. Preoperative anxiety was assessed using the modified Yale Preoperative Anxiety Scale. After anaesthesia induction, the magnesium group received an initial loading dose of 30 mg/kg magnesium sulphate over 10 min and, then, continuous infusion of 10 mg/kg per h until 10 min before the end of the surgery. The control group received an equal volume of normal saline via the same regimen. The Paediatric Anaesthesia Emergence Delirium (PAED) score, pain score, and respiratory events were assessed at the postanaesthetic care unit. RESULTS: Data obtained from 65 children were analyzed. The PAED and pain scores of the two groups did not differ significantly. There were 26 of 33 (78.8%) and 27 of 32 (84.4%) children with emergence delirium in the control and the magnesium groups, respectively (odds ratio 0.69, 95% CI 0.19-2.44; p = 0.561). The preoperative anxiety score was not significantly correlated with the PAED score. The incidence of respiratory events during the emergence period did not differ significantly between the two groups. CONCLUSIONS: Magnesium supplementation during anaesthesia had no significant effects on the incidence of emergence delirium or postoperative pain in children undergoing strabismus surgery. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT03132701 ). Prospectively registered May 8, 2017.
Asunto(s)
Delirio del Despertar/tratamiento farmacológico , Cuidados Intraoperatorios/métodos , Magnesio/uso terapéutico , Dolor Postoperatorio/tratamiento farmacológico , Estrabismo/cirugía , Preescolar , Suplementos Dietéticos , Femenino , Humanos , Magnesio/administración & dosificación , Masculino , Estudios Prospectivos , República de CoreaRESUMEN
BACKGROUND/AIM: Interleukin (IL)-1ß is a pro-inflammatory cytokine that has recently been established as a stimulator of angiogenesis via regulation of proangiogenic factor expression in the tumor microenvironment. This study aimed to demonstrate the inhibitory effects of Robinia pseudoacacia leaf extract (RP) on IL-1ß-mediated tumor angiogenesis. MATERIALS AND METHODS: Secreted embryonic alkaline phosphatase (SEAP) reporter gene assay, ex vivo and in vitro tube formation assay, western blot, and quantitative PCR were used to analyze the inhibitory effect of RP on IL-1ß-mediated angiogenesis. RESULTS: RP inhibited secretion of SEAP, blocked IL-1ß signaling, and inhibited IL-1ß-mediated angiogenesis in ex vivo and in vitro assays. RP inhibited nuclear translocation of NF-ĸB by suppressing phosphorylation of IL-1ß signaling protein kinases and inhibited mRNA expression of IL-1ß-induced pro-angiogenic factors including VEGFA, FGF2, ICAM1, CXCL8, and IL6. CONCLUSION: RP suppressed IL-1ß-mediated angiogenesis and, thus, could be a promising agent in anticancer therapy.
Asunto(s)
Interleucina-1beta/metabolismo , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Extractos Vegetales/farmacología , Hojas de la Planta/química , Robinia/química , Animales , Citocinas/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacosRESUMEN
Transfusion-induced hyperkalemia can lead to cardiac arrest, especially when the patient rapidly receives a large amount of red blood cells (RBCs), previously stored for a long period of time, irradiated or both. We report on a case of application of the Continuous AutoTransfusion System (CATS) to wash RBCs, in order to lower the high potassium (K(+)) level in the packed RBCs unit, during massive transfusion following transfusion-induced hyperkalemic cardiac arrest. After the washing process using CATS, there was no more electrocardiographic abnormality or cardiac arrest due to hyperkalemia. This case emphasizes the potential risk to develop transfusion-related hyperkalemic cardiac arrest, during massive transfusion of irradiated, pre-stored RBCs. CATS can be effectively used to lower the K(+) concentration in the packed RBCs unit, especially when the risk of transfusion-induced hyperkalemia is high.
RESUMEN
In small infants or neonates, open heart surgery without transfusion can have many risks regarding inadequate oxygen delivery and coagulopathy. However, if parents refuse blood transfusion, cardiac surgery without transfusion should be considered. We report a case of bloodless cardiac surgery in a 2.89 kg neonate with Jehovah's Witness parents. Blood conserving strategies were used. Preoperatively, erythropoietin and iron were supplemented to increase the hemoglobin level. Intraoperatively, techniques for minimizing blood loss were used, such as reducing priming volume for cardiopulmonary bypass, a blood salvage system, and modified ultrafiltration. Postoperatively, pharmacologic agents were administered and blood sampling was minimized.
RESUMEN
We examined functional properties of inhibitory postsynaptic currents (IPSCs) evoked by medial lemniscal stimulation, spontaneous IPSCs (sIPSCs), and single-channel, extrasynaptic currents evoked by glycine receptor agonists or gamma-aminobutyric acid (GABA) in rat ventrobasal thalamus. We identified synaptic currents by reversal at E(Cl) and sensitivity to elimination by strychnine, GABA(A) antagonists, or combined application. Glycinergic IPSCs featured short (about 12 ms) and long (about 80 ms) decay time constants. These fast and slow IPSCs occurred separately with monoexponential decays, or together with biexponential decay kinetics. Glycinergic sIPSCs decayed monoexponentially with time constants, matching fast and slow IPSCs. These findings were consistent with synaptic responses generated by two populations of glycine receptors, localized under different nerve terminals. Glycine, taurine, or beta-alanine applied to excised membrane patches evoked short- and long-duration current bursts. Extrasynaptic burst durations resembled fast and slow IPSC time constants. The single, intermediate time constant (about 22 ms) of GABA(A)ergic IPSCs cotransmitted with glycinergic IPSCs approximated the burst duration of extrasynaptic GABA(A) channels. We noted differences between synaptic and extrasynaptic receptors. Endogenously activated glycine and GABA(A) receptor channels had higher Cl- permeability than that of their extrasynaptic counterparts. The beta-amino acids activated long-duration bursts at extrasynaptic glycine receptors, consistent with a role in detection of ambient taurine or beta-alanine. Heterogeneous kinetics and permeabilities implicate molecular and functional diversity in thalamic glycine receptors. Fast, intermediate, and slow inhibitory postsynaptic potential decays, mostly attributed to cotransmission by glycinergic and GABAergic pathways, allow for discriminative modulation and integration with voltage-dependent currents in ventrobasal neurons.