Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Healthcare (Basel) ; 11(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37628522

RESUMEN

Most (90%) vitamin D synthesis occurs in the skin using sunlight (ultraviolet rays), and 10% is obtained through food. Vitamin D is an essential nutrient for skeletal growth and maintenance, cell proliferation and differentiation, and immune function. This study investigated whether maternal serum vitamin D concentrations induce maternofetal effects. Hematological analysis, serological changes, and precision fetal ultrasound findings were analyzed by maternal vitamin D concentration in gestational weeks 22-25 to ascertain direct effects on fetal growth. Bone density-vitamin D concentration correlation was analyzed. No hematologic or serological effect of maternal vitamin D concentration was detected; however, the sexually transmitted infection and cross-infection rates were inversely proportional to maternal vitamin D concentration. No significant correlation between vitamin D concentration and vertebral and femoral BMD was detected. For fetal growth, biparietal diameter, head circumference, abdominal circumference, femur length, and humerus length were analyzed. Humerus (p < 0.05) and femur (p < 0.001) lengths were higher in the vitamin D-sufficient group than in the vitamin D-deficient group. Vitamin D concentration did not positively affect hematologic changes and bone density; maternal vitamin D concentration essentially affected fetal bone growth. Vitamin D inhibits sexually transmitted infections in mothers and promotes fetal bone growth. Prevention of vitamin D deficiency, supplementation, or outdoor activities is recommended.

2.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299152

RESUMEN

This study aimed to establish an efficient plant regeneration system from leaf-derived embryogenic structure cultures of Daphne genkwa. To induce embryogenic structures, fully expanded leaf explants of D. genkwa were cultured on Murashige and Skoog (MS) medium supplemented with 0, 0.1, 0.5, 1, 2, and 5 mg·L-1 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. After 8 weeks of incubation, the highest frequency of embryogenic structure formation reached 100% when the leaf explants were cultivated on MS medium supplemented with 0.1 to 1 mg·L-1 2,4-D. At higher concentrations of 2,4-D (over 2 mg·L-1 2,4-D), the frequency of embryogenic structure formation significantly declined. Similar to 2,4-D, indole butyric acid (IBA) and α-naphthaleneacetic acid (NAA) treatments were also able to form embryogenic structures. However, the frequency of embryogenic structure formation was lower than that of 2,4-D. In particular, the yellow embryonic structure (YES) and white embryonic structure (WES) were simultaneously developed from the leaf explants of D. genkwa on culture medium containing 2,4-D, IBA, and NAA, respectively. Embryogenic calluses (ECs) were formed from the YES after subsequent rounds of subculture on MS medium supplemented with 1 mg·L-1 2,4-D. To regenerate whole plants, the embryogenic callus (EC) and the two embryogenic structures (YES and WES) were transferred onto MS medium supplemented with 0.1 mg·L-1 6-benzyl aminopurine (BA). The YES had the highest plant regeneration potential via somatic embryo and shoot development compared to the EC and WES. To our knowledge, this is the first successful report of a plant regeneration system via the somatic embryogenesis of D. genkwa. Thus, the embryogenic structures and plant regeneration system of D. genkwa could be applied to mass proliferation and genetic modification for pharmaceutical metabolite production in D. genkwa.

3.
Plants (Basel) ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176878

RESUMEN

This study aims to examine the metabolic discrimination between in vitro grown adventitious roots and the standard medicinal parts of Atractylodes macrocephala. To achieve this goal, firstly, in vitro culture conditions of adventitious roots such as indole-3-butyric acid (IBA) concentrations, types of media, inorganic salt strength of culture medium, and elicitor types and concentrations were optimized. The optimal culture conditions for proliferation of adventitious roots was found to consist of Murashige and Skoog (MS) medium containing 5 mg L-1 IBA. Whole cell extracts from adventitious roots and the standard medicinal parts of A. macrocephala were subjected to Fourier transform infrared spectroscopy (FT-IR). Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) from FT-IR spectral data showed that adventitious roots and standard medicinal parts were clearly distinguished in the PCA and PLS-DA score plot. Furthermore, the overall metabolite pattern from adventitious roots was changed depending on the dose-dependent manner of chemicals. These results suggest that FT-IR spectroscopy can be applied as an alternative tool for the screening of higher metabolic root lines and for discriminating metabolic similarity between in vitro grown adventitious roots and the standard medicinal parts. In addition, the adventitious roots proliferation system established in this study can be directly applied as an alternative means for the commercial production of A. macrocephala.

4.
J Acupunct Meridian Stud ; 16(2): 49-55, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37076179

RESUMEN

Background: A significant amount of research has been conducted to establish the validity of acupuncture, and it has been demonstrated through animal disease model studies that acupuncture influences mitochondrial changes. However, to more accurately examine the mechanisms of acupuncture treatment effectiveness in pathological models, it is crucial to investigate changes in disease-free animals. Among various hypotheses regarding the effects of acupuncture on the body, we focused on the result that acupuncture stimulation is related to mitochondria. Objectives: We examined the effects of acupuncture mitochondrial fission and fusionrelated mediators in disease-free Sprague Dawley (SD) rats' spleen meridian acupoints. Methods: SD rats were divided into control, SP1, SP2, SP3, SP5, and SP9 acupuncture groups. Acupuncture was performed at each point for 10 minutes daily for four days. Peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC-1α) and fission protein 1 (Fis1) levels were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), while dynamin-related protein 1 (DRP1), optic atrophy-1 (OPA1), mitofusin-1 (MFN1), and mitofusin-2 (MFN2) levels were assessed via western blotting. Mitochondria protein concentrations and NADH dehydrogenase activity in spleen tissues were measured using enzyme-linked immunosorbent assay (ELISA). Results: PGC-1α expression decreased in the SP1 (p < 0.01), SP5 (p < 0.05), and SP9 (p < 0.05) groups, while Fis1 expression increased in the SP1 (p < 0.01), SP5 (p < 0.01), and SP9 (p < 0.05) groups. DRP1, OPA1, MFN1, and MFN2 levels exhibited no significant changes. Mitochondrial protein concentrations decreased in the SP2 (p < 0.01), SP3 (p < 0.01), SP5 (p < 0.01), and SP9 (p < 0.01) groups, while NADH dehydrogenase activity decreased in the SP2 (p < 0.05) and SP9 (p < 0.05) groups. Conclusion: Acupuncture at the SP9 acupoint influenced the mitochondrial fission pathway by modulating PGC-1α and Fis1 mediators in the rat spleen under non-disease conditions.


Asunto(s)
Terapia por Acupuntura , Dinámicas Mitocondriales , Ratas , Animales , Ratas Sprague-Dawley , Dinámicas Mitocondriales/fisiología , NADH Deshidrogenasa/farmacología , Bazo , Expresión Génica
5.
Artículo en Inglés | MEDLINE | ID: mdl-35928244

RESUMEN

Hepatic diseases, such as hepatonecrosis, hepatitis, and hepatocirrhosis, are associated with mitochondrial dysfunction and increased reactive oxygen species generation and inflammation, ultimately leading to liver failure. In this study, we examined if acupuncture at LR3 can affect mitochondria-related gene expression in a liver damage model of experimentally induced acute liver failure (ALF). ALF was induced by the intraperitoneal injection of D-galactosamine (D-GalN) in experimental rats, who then received either sham (ALF), manual acupuncture (MA), electroacupuncture (EA), or silymarin (PC, positive control) treatment. Liver tissues were extracted from experimental and untreated control rats for histopathological analysis and expression profiling of genes involved in mitochondrial function. Of the 168 mitochondria-related genes profiled, two genes belonging to the solute-carrier transporter family (Slc25a15 and Slc25a25) and Ndufb7 were upregulated. Gamma-glutamylcysteine synthetase was more downregulated in MA than ALF. Furthermore, MA reversed D-GalN-induced inflammatory cell infiltration, destruction of hepatic cell plates, and increase in the levels of the proinflammatory cytokine TNF-α. MA at LR3 can reduce the risk of D-GalN-induced ALF by inducing the expression of metabolic and inflammation-related genes and regulating proinflammatory factor production in hepatic mitochondria.

6.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486319

RESUMEN

Pterocarpans are derivatives of isoflavonoids, found in many species of the family Fabaceae. Sophora flavescens Aiton is a promising traditional Asian medicinal plant. Plant cell suspension cultures represent an excellent source for the production of valuable secondary metabolites. Herein, we found that methyl jasmonate (MJ) elicited the activation of pterocarpan biosynthetic genes in cell suspension cultures of S. flavescens and enhanced the accumulation of pterocarpans, producing mainly trifolirhizin, trifolirhizin malonate, and maackiain. MJ application stimulated the expression of structural genes (PAL, C4H, 4CL, CHS, CHR, CHI, IFS, I3'H, and IFR) of the pterocarpan biosynthetic pathway. In addition, the co-treatment of MJ and methyl-ß-cyclodextrin (MeßCD) as a solubilizer exhibited a synergistic effect on the activation of the pterocarpan biosynthetic genes. The maximum level of total pterocarpan production (37.2 mg/g dry weight (DW)) was obtained on day 17 after the application of 50 µM MJ on cells. We also found that the combined treatment of cells for seven days with MJ and MeßCD synergistically induced the pterocarpan production (trifolirhizin, trifolirhizin malonate, and maackiain) in the cells (58 mg/g DW) and culture medium (222.7 mg/L). Noteworthy, the co-treatment only stimulated the elevated extracellular production of maackiain in the culture medium, indicating its extracellular secretion; however, its glycosides (trifolirhizin and trifolirhizin malonate) were not detected in any significant amounts in the culture medium. This work provides new strategies for the pterocarpan production in plant cell suspension cultures, and shows MeßCD to be an effective solubilizer for the extracellular production of maackiain in the cell cultures of S. flavescens.


Asunto(s)
Acetatos/farmacología , Ciclodextrinas/farmacología , Ciclopentanos/farmacología , Oxilipinas/farmacología , Raíces de Plantas/metabolismo , Pterocarpanos/metabolismo , Sophora/efectos de los fármacos , Sophora/metabolismo , Biotecnología , Medios de Cultivo , Sinergismo Farmacológico , Flavonoides/análisis , Glucósidos/análisis , Compuestos Heterocíclicos de 4 o más Anillos/análisis , Espectroscopía de Resonancia Magnética , Malonatos/análisis , Extractos Vegetales/química , Hojas de la Planta/metabolismo , Plantas Medicinales , Pterocarpanos/análisis
7.
Plant Signal Behav ; 14(7): 1604016, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30983498

RESUMEN

Pepper (Capsicum annuum), one of the most economically important vegetables of the Solanaceae family, is cultivated worldwide. To apply versatile genome-editing tools to a pepper genome for precise molecular breeding, an in vitro regeneration protocol is indispensable and callus formation is an essential step in the regeneration of pepper. Here, we show that calli were successfully induced from young leaves (3-4 cm) of pepper plants, the hot pepper C. annum 'CM334' ('CM334') and bell pepper C. annum 'Dempsey' ('Dempsey'), grown on soil for less than 7 weeks. The excised leaf segments of 'CM334' produced white calli in B5 medium containing 3% sucrose (3S), 2 mg/L 6-benzylaminopurine (2BAP), and 1 mg/L α-naphthalene acetic acid (1NAA). The calli were able to proliferate in B5 3S 2BAP medium supplemented with 2-morpholinoethanesulphonic acid (MES) and 1.5 mg/L NAA (1.5NAA). The excised leaf segments of 'Dempsey' produced light-yellow and friable calli in MS medium supplemented with B5 vitamins (MSB5), 3S and 1 mg/L 2,4-dichlorophenoxyacetic acid (1 2,4D), and the calli were also maintained in the same medium. Our findings establish the conditions for leaf-derived callus formation, which is the basis for regeneration of whole plants for two different pepper cultivars, for obtaining stable protoplasts, and eventually for applying genome-editing tools to improve the quality of peppers.


Asunto(s)
Capsicum/fisiología , Hojas de la Planta/fisiología , Compuestos de Bencilo/farmacología , Capsicum/efectos de los fármacos , Capsicum/genética , Hojas de la Planta/efectos de los fármacos , Purinas/farmacología , Esterilización , Técnicas de Cultivo de Tejidos
8.
Mol Cells ; 41(11): 979-992, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30396236

RESUMEN

Potato (Solanum tuberosum L.) is the third most important food crop, and breeding drought-tolerant varieties is vital research goal. However, detailed molecular mechanisms in response to drought stress in potatoes are not well known. In this study, we developed EMS-mutagenized potatoes that showed significant tolerance to drought stress compared to the wild-type (WT) 'Desiree' cultivar. In addition, changes to transcripts as a result of drought stress in WT and drought-tolerant (DR) plants were investigated by de novo assembly using the Illumina platform. One-week-old WT and DR plants were treated with -1.8 Mpa polyethylene glycol-8000, and total RNA was prepared from plants harvested at 0, 6, 12, 24, and 48 h for subsequent RNA sequencing. In total, 61,100 transcripts and 5,118 differentially expressed genes (DEGs) displaying up- or down-regulation were identified in pairwise comparisons of WT and DR plants following drought conditions. Transcriptome profiling showed the number of DEGs with up-regulation and down-regulation at 909, 977, 1181, 1225 and 826 between WT and DR plants at 0, 6, 12, 24, and 48 h, respectively. Results of KEGG enrichment showed that the drought tolerance mechanism of the DR plant can mainly be explained by two aspects, the 'photosynthetic-antenna protein' and 'protein processing of the endoplasmic reticulum'. We also divided eight expression patterns in four pairwise comparisons of DR plants (DR0 vs DR6, DR12, DR24, DR48) under PEG treatment. Our comprehensive transcriptome data will further enhance our understanding of the mechanisms regulating drought tolerance in tetraploid potato cultivars.


Asunto(s)
Deshidratación/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Adaptación Fisiológica , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutagénesis , Fotosíntesis/genética , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Estrés Fisiológico , Transcriptoma
9.
ScientificWorldJournal ; 2018: 6218430, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686587

RESUMEN

Sophorae Radix (Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.


Asunto(s)
Genes de Plantas , Fenoles/metabolismo , Sophora/genética , Sophora/metabolismo , Vías Biosintéticas/genética , Cromatografía Líquida de Alta Presión , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Especificidad de Órganos/genética , Fenoles/química , Fitoquímicos/química , Extractos Vegetales , Sophora/química , Transcriptoma
10.
Front Plant Sci ; 9: 176, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515601

RESUMEN

Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT), and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

11.
PLoS One ; 11(3): e0150952, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26959360

RESUMEN

Atopic dermatitis (AD) is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA) isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production.


Asunto(s)
Ácidos Cumáricos/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Células TH1/metabolismo , Células Th2/metabolismo , Administración Oral , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácidos Cumáricos/farmacología , Dermatitis Atópica/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Propionatos , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Small ; 12(2): 214-9, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26584654

RESUMEN

Recently, the appeal of 2D black phosphorus (BP) has been rising due to its unique optical and electronic properties with a tunable band gap (≈0.3-1.5 eV). While numerous research efforts have recently been devoted to nano- and optoelectronic applications of BP, no attention has been paid to promising medical applications. In this article, the preparation of BP-nanodots of a few nm to <20 nm with an average diameter of ≈10 nm and height of ≈8.7 nm is reported by a modified ultrasonication-assisted solution method. Stable formation of nontoxic phosphates and phosphonates from BP crystals with exposure in water or air is observed. As for the BP-nanodot crystals' stability (ionization and persistence of fluorescent intensity) in aqueous solution, after 10 d, ≈80% at 1.5 mg mL(-1) are degraded (i.e., ionized) in phosphate buffered saline. They showed no or little cytotoxic cell-viability effects in vitro involving blue- and green-fluorescence cell imaging. Thus, BP-nanodots can be considered a promising agent for drug delivery or cellular tracking systems.


Asunto(s)
Tecnología Biomédica/métodos , Nanopartículas/química , Fósforo/química , Animales , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fluorescencia , Humanos , Microscopía de Fuerza Atómica , Fenómenos Ópticos , Espectrometría Raman , Difracción de Rayos X
13.
J Nat Med ; 68(1): 154-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23771524

RESUMEN

The present work describes the protective effects of thymol isolated from Thymus quinquecostatus Celak. against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage through various experiments with Chang liver cells. Thymol significantly protected hepatocytes against t-BHP-induced cell cytotoxicity as demonstrated by increased viability. Furthermore, observation of Hoechst staining, annexin V/PI staining, and expression of Bcl-2 and Bax indicated that thymol inhibited t-BHP-induced Chang cell damage. Further, thymol inhibited the loss of mitochondrial membrane potential in t-BHP-treated Chang cells and prevented oxidative stress-triggered reactive oxygen species (ROS) and lipid peroxidation (malondialdehyde, MDA). Thymol restored the antioxidant capability of hepatocytes including glutathione (GSH) levels which were reduced by t-BHP. These results indicated that thymol prevents oxidative stress-induced damage to liver cells through suppression of ROS and MDA levels and increase of GSH level.


Asunto(s)
Antioxidantes/farmacología , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Timol/farmacología , Thymus (Planta) , terc-Butilhidroperóxido/toxicidad , Anexina A5/metabolismo , Antioxidantes/aislamiento & purificación , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citoprotección , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Glutatión/farmacología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fitoterapia , Plantas Medicinales , Especies Reactivas de Oxígeno/metabolismo , Timol/aislamiento & purificación , Thymus (Planta)/química , Proteína X Asociada a bcl-2/metabolismo
14.
BMC Genomics ; 14: 802, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24252158

RESUMEN

BACKGROUND: Lycium chinense is well known in traditional Chinese herbal medicine for its medicinal value and composition, which have been widely studied for decades. However, further research on Lycium chinense is limited due to the lack of transcriptome and genomic information. RESULTS: The transcriptome of L. chinense was constructed by using an Illumina HiSeq 2000 sequencing platform. All 56,526 unigenes with an average length of 611 nt and an N50 equaling 848 nt were generated from 58,192,350 total raw reads after filtering and assembly. Unigenes were assembled by BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. Using these transcriptome data, the majority of genes that are associated with phenylpropanoid biosynthesis in L. chinense were identified. In addition, phenylpropanoid biosynthesis-related gene expression and compound content in different organs were analyzed. We found that most phenylpropanoid genes were highly expressed in the red fruits, leaves, and flowers. An important phenylpropanoid, chlorogenic acid, was also found to be extremely abundant in leaves. CONCLUSIONS: Using Illumina sequencing technology, we have identified the function of novel homologous genes that regulate metabolic pathways in Lycium chinense.


Asunto(s)
Antocianinas/biosíntesis , Vías Biosintéticas/genética , Flavonoides/biosíntesis , Lycium/metabolismo , Transcriptoma , Mapeo Contig , Perfilación de la Expresión Génica , Ontología de Genes , Genes de Plantas , Lignina/biosíntesis , Lycium/genética , Medicina Tradicional China , Anotación de Secuencia Molecular , Especificidad de Órganos , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA