Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37432256

RESUMEN

Osteoblasts and osteoclasts play crucial roles in bone formation and bone resorption. We found that plum-derived exosome-like nanovesicles (PENVs) suppressed osteoclast activation and modulated osteoblast differentiation. PENVs increased the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells and osteoblasts from mouse bone marrow cultures. Notably, PENVs elevated the expression of osteoblastic transcription factors and osteoblast differentiation marker proteins in MC3T3-E1 cells. Higher levels of phosphorylated BMP-2, p38, JNK, and smad1 proteins were detected in PENV-treated MC3T3-E1 cells. Additionally, the number of TRAP-positive cells was significantly decreased in PENV-treated osteoclasts isolated from osteoblasts from mouse bone marrow cultures. Importantly, osteoclastogenesis of marker proteins such as PPAR-gamma, NFATc1, and c-Fos were suppressed by treatment with PENVs (50 µg/mL). Taken together, these results demonstrate that PENVs can be used as therapeutic targets for treating bone-related diseases by improving osteoblast differentiation and inhibiting osteoclast activation for the first time.


Asunto(s)
Enfermedades Óseas , Exosomas , Prunus domestica , Animales , Ratones , Osteoclastos , Osteoblastos , Diferenciación Celular
2.
J Med Food ; 26(1): 49-58, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36594993

RESUMEN

Osteoporosis is characterized by low bone mass and elevated structural deterioration of the bone tissue, resulting in bone weakness with an increased risk of fracture. Considering biological activities of various phytochemicals extracted from apples, we herein demonstrated the potential antiosteoporotic effects of apple-derived nanovesicles (apple NVs) using osteoblastic MC3T3-E1 cells. Apple NVs significantly stimulated the growth of MC3T3-E1 cells. The cellular alkaline phosphatase (ALP) activity was significantly upregulated in the 5 µg/mL apple NVs-treated group. In addition, the concentrarion of mineralized nodules was significantly increased in the apple NVs-treated groups. Furthermore, apple NVs increased the expression of the genes and proteins associated with osteoblast growth and differentiation, such as Runx2, ALP, OPN, and BMP2/4, which further activated ERK- and JNK-related mitogen-activated protein kinase signaling. These results demonstrate that apple NVs have a potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells through regulating the BMP2/Smad1 pathways.


Asunto(s)
Malus , Osteoporosis , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Malus/metabolismo , Osteoblastos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Transducción de Señal , Animales , Ratones
3.
Pflugers Arch ; 471(11-12): 1407-1418, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31667577

RESUMEN

Orexin A (OXA) is a neuropeptide associated with plasma insulin and leptin levels involved in body weight and appetite regulation. However, little is known about the effect of OXA on leptin secretion in adipocytes and its physiological roles. Leptin secretion and expression were analysed in 3T3-L1 adipocytes. Plasma leptin, adiponectin and insulin levels were measured by ELISA assay. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) levels in the hypothalamus were evaluated by western blotting. OXA dose-dependently suppressed leptin secretion from 3T3-L1 adipocytes by inhibiting its gene expression while facilitating adiponectin secretion. The leptin inhibition by OXA was mediated via orexin receptors (OXR1 and OXR2). In addition to the pathway via extracellular signal-regulated kinases, OXA triggered adenylyl cyclase-induced cAMP elevation, which results in protein kinase A-mediated activation of cAMP response element-binding proteins (CREB). Accordingly, CREB inhibition restored the OXA-induced downregulation of leptin gene expression and secretion. Exogenous OXA for 4 weeks decreased fasting plasma leptin levels and increased hypothalamic pSTAT3 levels in high-fat diet-fed mice, regardless of increase in body weight and food intake. These results suggest that high dose of OXA directly inhibits leptin mRNA expression and thus secretion in adipocytes, which may be a peripheral mechanism of OXA for its role in appetite drive during fasting. It may be also critical for lowering basal plasma leptin levels and thus maintaining postprandial hypothalamic leptin sensitivity.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Leptina/sangre , Leptina/metabolismo , Orexinas/farmacología , Células 3T3-L1 , Animales , Apetito/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Línea Celular , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/metabolismo , Receptores de Orexina/metabolismo
4.
Redox Biol ; 14: 142-153, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28938192

RESUMEN

Mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) is a major producer of mitochondrial NADPH, required for glutathione (GSH)-associated mitochondrial antioxidant systems including glutathione peroxidase (GPx) and glutathione reductase (GR). Here, we investigated the role of IDH2 in hepatic ischemia-reperfusion (HIR)-associated mitochondrial injury using Idh2-knockout (Idh2-/-) mice and wild-type (Idh2+/+) littermates. Mice were subjected to either 60min of partial liver ischemia or sham-operation. Some mice were administered with 2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (mito-TEMPO, a mitochondria-targeting antioxidant). HIR induced severe histological and functional damages of liver in both Idh2+/+ mice and Idh2-/- mice and those damages were more severe in Idh2-/- mice than in wild-type littermates. HIR induces dysfunction of IDH2, leading to the decreases of NADPH level and mitochondrial GR and GPx functions, consequently resulting in mitochondrial and cellular oxidative injury as reflected by mitochondrial cristae loss, mitochondrial fragmentation, shift in mitochondrial fission, cytochrome c release, and cell death. These HIR-induced changes were greater in Idh2-/- mice than wild-type mice. The mito-TEMPO supplement significantly attenuated the aforementioned changes, and these attenuations were much greater in Idh2-/- mice when compared with wild-type littermates. Taken together, results have demonstrated that HIR impairs in the IDH2-NADPH-GSH mitochondrial antioxidant system, resulting in increased mitochondrial oxidative damage and dysfunction, suggesting that IDH2 plays a critical role in mitochondrial redox balance and HIR-induced impairment of IDH2 function is associated with the pathogenesis of ischemia-reperfusion-induced liver failure.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Hígado/metabolismo , Mitocondrias/metabolismo , Daño por Reperfusión/patología , Animales , Antioxidantes/metabolismo , Apoptosis , Catalasa/metabolismo , Citocromos c/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Isocitrato Deshidrogenasa/deficiencia , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/fisiología , NADP/metabolismo , Estrés Oxidativo , Daño por Reperfusión/mortalidad , Daño por Reperfusión/veterinaria , Tasa de Supervivencia , Proteína X Asociada a bcl-2/metabolismo
5.
Environ Toxicol Pharmacol ; 24(3): 199-205, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21783811

RESUMEN

Samhwangsasim-tang (SST) is a widely used herbal medicine with vasodilatory actions in oriental countries. We hypothesized that SST modulates vascular contractility by decreasing phosphorylation of the myosin phosphatase target subunit. Rat aortic ring preparations were mounted in organ baths and subjected to contractions or relaxations. Phosphorylation of 20kDa myosin light chains (MLC(20)) and MYPT1, a target subunit of myosin phosphate 1, were examined with immunoblots. SST relaxed aortic ring preparations precontracted with phenylephrine whether endothelium was intact or denuded. Treatment of aortic rings with N(ω)-nitro-l-arginine methyl ester (l-NAME), an inhibitor of endothelial nitric oxide synthase or methylene blue, an inhibitor of guanylyl cyclase, did not affect the relaxing action of SST. Furthermore, SST inhibited vascular contractions induced by NaF or phenylephrine, but not by phorbol dibutyrate. SST also decreased vascular tension precontracted by 8.0mmol/L NaF or 1.0µmol/L phenylephrine, but not by 1.0µmol/L phorbol dibutyrate. In vascular strips, SST decreased the phosphorylation level of both MLC(20) and MYPT1 induced by 8.0mmol/L NaF. In conclusion, SST inhibited vascular contraction by decreasing phosphorylation of the myosin phosphatase target subunit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA