Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897937

RESUMEN

Recent studies have shown that Nur77 and AMPKα play an important role in regulating adipogenesis and isoalantolactone (ISO) dual-targeting AMPKα and Nur77 inhibits adipogenesis. In this study, we hypothesized that Inula helenium (elecampane) root extract (IHE), which contains two sesquiterpene lactones, alantolactone (ALA) and ISO, as major compounds, might inhibit adipogenesis. Here, we found that ALA and IHE simultaneously target AMPKα and Nur77 and inhibited adipogenic differentiation of 3T3-L1 cells, accompanied by the decreased expression of adipocyte markers. Further mechanistic studies demonstrated that IHE shares similar mechanisms of action with ISO that reduce mitotic clonal expansion during the early phase of adipogenic differentiation and decrease expression of cell cycle regulators. These results suggest that IHE inhibits adipogenesis, in part, through co-regulation of AMPKα and Nur77, and has potential as a therapeutic option for obesity and related metabolic dysfunction.


Asunto(s)
Inula , Sesquiterpenos , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP , Adipogénesis , Animales , Diferenciación Celular , Lactonas/farmacología , Ratones , Fitoquímicos , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos de Eudesmano
2.
Lab Anim Res ; 35: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32257903

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. It is characterized by the accumulation of lipids without alcohol intake and often progresses to non-alcoholic steatohepatitis (NASH), liver fibrosis, and end-stage liver diseases such as cirrhosis or cancer. Although animal models have greatly contributed to the understanding of NAFLD, studies on the disease progression in humans are still limited. In this study, we used the recently reported high-fat L-methionine-defined and choline-deficient (HFMCD) diet to rapidly induce NASH and compared the responses to HFMCD in ICR mice from three different countries: Korea (supplied by the National Institute of Food and Drug Safety Evaluation), USA, and Japan during 6 weeks. Feeding HFMCD did not cause significant differences in weight gain in comparison with mice fed control diet. Relative weight of the liver increased gradually, while the relative weight of the kidneys remained unchanged. The parameters of liver injury (serum activities of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) increased rapidly from 1 week and remained elevated for as long as 6 weeks. Histopathological analysis showed that the accumulation of hepatic lipids induced by HFMCD was prominent at 1 week after diet supplementation and increased further at 6 weeks. Inflammatory markers were significantly increased in a time-dependent manner by HFMCD. The mRNA levels of TNF-α and IL-6 were elevated approximately 15-fold relative to control diet and that of IL-1ß was increased more than 20-folds at 6 week after the onset of HFMCD intake. In addition, mRNA expression of fibrosis markers such as α-SMA, TGFß1, and Col1a1 were also significantly increased at 6 week. In summary, the responses of Korl:ICR mice by intake of HFMCD diet were similar to those of ICR mice from other sources, which suggests that Korl:ICR mice is also a useful resource to study the pathogenesis of diet-induced NAFLD.

3.
Int J Obes (Lond) ; 43(5): 952-962, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30538281

RESUMEN

BACKGROUND: Suppression of adipogenesis has been considered as a potential target for the prevention and treatment of obesity and associated metabolic disorders, and the nuclear receptor 4A1 (NR4A1/Nur77) and AMPKα are known to play important roles during early and intermediate stages of adipogenesis. Therefore, we hypothesized that dual targeting Nur77 and AMPKα would show strong inhibitory effect on adipogenesis. METHODS: We screened a herbal medicine-based small molecule library to identify novel natural compounds dual targeting Nur77 and AMPKα, and the antiadipogenic effects and mechanisms of action of a "hit" compound were studied in 3T3-L1 cells. In vivo antiobesity effects of the compound were also investigated in high-fat diet (HFD)-induced obese mice. RESULTS: We identified isoalantolactone (ISO) as a new NR4A1 inactivator that also activates AMPKα in 3T3-L1 cells. ISO, as expected, inhibited adipogenic differentiation of 3T3-L1 preadipocytes, accompanied by reduced mitotic clonal expansion (MCE) which occurs in the early stage of adipogenesis and decreased expression of genes required for MCE and cell cycle markers including cyclin A, cyclin D1. Furthermore, ISO reduced body weight gain and fat mass (epididymal, subcutaneous, perirenal, and inguinal white adipose tissues) in the high-fat diet-fed C57BL/6 N mice. Serum levels of triglycerides, aspartate transaminase, and alanine transaminase and hepatic steatosis were also significantly improved in the ISO-treated group compared to the high-fat diet control group. CONCLUSIONS: These results suggest that ISO dual targeting Nur77 and AMPKα during adipogenesis represents a novel class of mechanism-based antiadipogenic agents for treatment of obesity and associated metabolic disorders, including hyperlipidemia and fatty liver.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Adipogénesis/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Polifenoles/farmacología , Sesquiterpenos/farmacología , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
4.
Chem Biol Interact ; 294: 151-157, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30148990

RESUMEN

Deoxypodophyllotoxin (DPT) is a naturally occurring flavolignan in Anthriscus sylvestris known as cow parsley or wild chervil, and has been reported to have inhibitory effects against several pathological processes including cancer, inflammation and infection. Here, we report the effects of DPT in the fatty liver induced by high fat diet in vivo as well as its regulatory mechanism related with the transcription factor for lipogenic genes such as sterol regulatory element binding protein-1c (SREBP-1c) in vitro. C57BL/6 mice were fed high fat diet for 10 weeks and also orally administrated with DPT for additional 4 weeks. 5 and 10 mg/kg of DPT decreased lipid accumulation in the liver induced by high fat diet, as indicated by histological parameters such as Oil Red O staining and hematoxylin & eosin as well as the contents of hepatic triglyceride and cholesterol. In hepatocytes, DPT inhibited the liver X receptor α-mediated SREBP-1c induction and expression of the lipogenic genes, including fatty acid synthase, acetyl-CoA carboxylase and stearoyl-CoA desaturase-1. Moreover, DPT induced AMP-activated protein kinase (AMPK) activation, which has been known to inhibit the expression of SREBP-1c in hepatocyte. Also this compound restored the dysregulation of AMPK and SREBP-1c induced by high fat diet in mice. In conclusion, we demonstrated that DPT significantly inhibited fatty liver by adjusting lipid metabolism coordinated with AMPK activation and SREBP-1c inhibition.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apiaceae/metabolismo , Hígado/efectos de los fármacos , Podofilotoxina/análogos & derivados , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Colesterol/metabolismo , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Células Hep G2 , Humanos , Hidrocarburos Fluorados/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Podofilotoxina/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Sulfonamidas/farmacología , Triglicéridos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
Chem Biol Interact ; 262: 57-68, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-27916511

RESUMEN

Medicinal herbs are used to treat or prevent various diseases, and function to regulate protective mechanisms as nutraceuticals. Fructus Ligustri lucidi is the fruit of Ligustrum lucidum and has been used for its tonic effects on the liver. This study was designed to examine the effects of Fructus Ligustri lucidi water extract (FLL) against severe oxidative stress and mitochondrial impairment in vivo and in vitro and to elucidate its cellular mechanisms of action. Treatment of HepG2 cells with arachidonic acid (AA) + iron successfully induced oxidative stress and apoptosis, as indicated by depletion of glutathione, formation of ROS, decreses in mitochondrial membrane potential (Δψm), and altered expression of apoptosis-related proteins, such as procaspase-3 and Bcl-xL. FLL treatment significantly blocked these pathological changes and the mitochondrial dysfunction caused by AA + iron, which were similar with the effect of aminoimidazole-carboxamide-ß-d-ribofuranoside (AICAR). Moreover, FLL induced the activation of AMP-activated protein kinase (AMPK), which was mediated by its upstream kinase LKB1. Inhibition or activation of AMPK revealed the role of AMPK in cellular protection conferred by FLL in LKB1-deficient cells. In mice, oral administration of 100 mg/kg FLL activated AMPK in the liver, and protected against oxidative stress and liver injury induced by CCl4 injection. Among the components of FLL, chlorogenic acid was found to be responsible for the protection of hepatocytes against AA + iron-induced cellular damage. Overall, our results confirmed that FLL has the ability to protect hepatocytes against oxidative injury through regulation of the AMPK signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Ligustrum/química , Extractos Vegetales/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Antioxidantes/química , Caspasa 3/metabolismo , Línea Celular , Activación Enzimática/efectos de los fármacos , Frutas/química , Frutas/metabolismo , Células Hep G2 , Humanos , Ligustrum/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína bcl-X/metabolismo
6.
Nutrients ; 8(7)2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27455313

RESUMEN

It has been reported that barley leaves possess beneficial properties such as antioxidant, hypolipidemic, antidepressant, and antidiabetic. Interestingly, barley sprouts contain a high content of saponarin, which showed both anti-inflammatory and antioxidant activities. In this study, we evaluated the effect of barley sprouts on alcohol-induced liver injury mediated by inflammation and oxidative stress. Raw barley sprouts were extracted, and quantitative and qualitative analyses of its components were performed. The mice were fed a liquid alcohol diet with or without barley sprouts for four weeks. Lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were used to study the effect of barley sprouts on inflammation. Alcohol intake for four weeks caused liver injury, evidenced by an increase in serum alanine aminotransferase and aspartate aminotransferase activities and tumor necrosis factor (TNF)-α levels. The accumulation of lipid in the liver was also significantly induced, whereas the glutathione (GSH) level was reduced. Moreover, the inflammation-related gene expression was dramatically increased. All these alcohol-induced changes were effectively prevented by barley sprouts treatment. In particular, pretreatment with barley sprouts significantly blocked inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression in LPS-stimulated RAW 264.7. This study suggests that the protective effect of barley sprouts against alcohol-induced liver injury is potentially attributable to its inhibition of the inflammatory response induced by alcohol.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Suplementos Dietéticos , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/prevención & control , Hordeum/química , Extractos Vegetales/uso terapéutico , Plantones/química , Animales , Antiinflamatorios no Esteroideos/análisis , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/uso terapéutico , Apigenina/análisis , Apigenina/aislamiento & purificación , Apigenina/uso terapéutico , Biomarcadores/sangre , Biomarcadores/metabolismo , Supervivencia Celular/efectos de los fármacos , Hígado Graso Alcohólico/sangre , Hígado Graso Alcohólico/inmunología , Glucósidos/análisis , Glucósidos/aislamiento & purificación , Glucósidos/uso terapéutico , Hordeum/crecimiento & desarrollo , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Células RAW 264.7 , Plantones/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA