Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 41(13): 111894, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577374

RESUMEN

Paradoxically, glucose, the primary driver of satiety, activates a small population of anorexigenic pro-opiomelanocortin (POMC) neurons. Here, we show that lactate levels in the circulation and in the cerebrospinal fluid are elevated in the fed state and the addition of lactate to glucose activates the majority of POMC neurons while increasing cytosolic NADH generation, mitochondrial respiration, and extracellular pyruvate levels. Inhibition of lactate dehydrogenases diminishes mitochondrial respiration, NADH production, and POMC neuronal activity. However, inhibition of the mitochondrial pyruvate carrier has no effect. POMC-specific downregulation of Ucp2 (Ucp2PomcKO), a molecule regulated by fatty acid metabolism and shown to play a role as transporter in the malate-aspartate shuttle, abolishes lactate- and glucose-sensing of POMC neurons. Ucp2PomcKO mice have impaired glucose metabolism and are prone to obesity on a high-fat diet. Altogether, our data show that lactate through redox signaling and blocking mitochondrial glucose utilization activates POMC neurons to regulate feeding and glucose metabolism.


Asunto(s)
NAD , Proopiomelanocortina , Ratones , Animales , Proopiomelanocortina/metabolismo , NAD/metabolismo , Glucosa/metabolismo , Neuronas/metabolismo , Lactatos/metabolismo , Hipotálamo/metabolismo , Proteína Desacopladora 2/metabolismo
2.
Cell Metab ; 30(5): 952-962.e5, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31495690

RESUMEN

Microglia play a crucial role in immune responses, including inflammation. Diet-induced obesity (DIO) triggers microglia activation and hypothalamic inflammation as early as 3 days after high-fat diet (HFD) exposure, before changes in body weight occur. The intracellular mechanism(s) responsible for HFD-induced microglia activation is ill defined. Here, we show that in vivo, HFD induced a rapid and transient increase in uncoupling protein 2 (Ucp2) mRNA expression together with changes in mitochondrial dynamics. Selective microglial deletion of Ucp2 prevented changes in mitochondrial dynamics and function, microglia activation, and hypothalamic inflammation. In association with these, male and female mice were protected from HFD-induced obesity, showing decreased feeding and increased energy expenditure that were associated with changes in the synaptic input organization and activation of the anorexigenic hypothalamic POMC neurons and astrogliosis. Together, our data point to a fuel-availability-driven mitochondrial mechanism as a major player of microglia activation in the central regulation of DIO.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microglía/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Proteína Desacopladora 2/metabolismo , Animales , Peso Corporal , Metabolismo Energético/genética , Femenino , Técnicas de Inactivación de Genes , Hipotálamo/citología , Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , Proteína Desacopladora 2/genética
3.
Annu Rev Physiol ; 79: 209-236, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28192062

RESUMEN

The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.


Asunto(s)
Hipotálamo/metabolismo , Hipotálamo/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Proopiomelanocortina/metabolismo , Animales , Homeostasis/fisiología , Humanos
4.
Nature ; 519(7541): 45-50, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25707796

RESUMEN

Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide ß-endorphin. CB1R activation selectively increases ß-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids.


Asunto(s)
Cannabinoides/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Hipotálamo/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Naloxona/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Proteína Desacopladora 2 , alfa-MSH/metabolismo , betaendorfina/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(32): 11876-81, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071172

RESUMEN

Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prep(gt/gt) and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prep(gt/gt) and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prep(gt/gt) mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus-PREP reversed the glucose-intolerant phenotype of the Prep(gt/gt) mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function.


Asunto(s)
Glucagón/metabolismo , Hipotálamo/enzimología , Insulina/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Glucemia/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Técnica de Clampeo de la Glucosa , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/etiología , Hipotálamo/fisiología , Indoles/farmacología , Secreción de Insulina , Canales Iónicos/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Páncreas/metabolismo , Fosforilación , Prolil Oligopeptidasas , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Inhibidores de Serina Proteinasa/farmacología , Tiazolidinas/farmacología , Proteína Desacopladora 1 , Núcleo Hipotalámico Ventromedial/enzimología , Núcleo Hipotalámico Ventromedial/fisiología
6.
Proc Natl Acad Sci U S A ; 110(15): 6193-8, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530205

RESUMEN

Whole-body energy metabolism is regulated by the hypothalamus and has an impact on diverse tissue functions. Here we show that selective knockdown of Sirtuin 1 Sirt1 in hypothalamic Agouti-related peptide-expressing neurons, which renders these cells less responsive to cues of low energy availability, significantly promotes CD4(+) T-cell activation by increasing production of T helper 1 and 17 proinflammatory cytokines via mediation of the sympathetic nervous system. These phenomena were associated with an impaired thymic generation of forkhead box P3 (FoxP3(+)) naturally occurring regulatory T cells and their reduced suppressive capacity in the periphery, which resulted in increased delayed-type hypersensitivity responses and autoimmune disease susceptibility in mice. These observations unmask a previously unsuspected role of hypothalamic feeding circuits in the regulation of adaptive immune response.


Asunto(s)
Hambre , Hipotálamo/patología , Neuronas/patología , Linfocitos T Reguladores/citología , Inmunidad Adaptativa , Alelos , Animales , Antígenos/metabolismo , Autoinmunidad , Dominio Catalítico , Encefalomielitis Autoinmune Experimental/metabolismo , Citometría de Flujo , Privación de Alimentos , Factores de Transcripción Forkhead/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Hipotálamo/metabolismo , Inflamación , Ratones , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/metabolismo , Sirtuina 1/metabolismo , Timo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA