Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204534

RESUMEN

Leaky gut is a condition of increased paracellular permeability of the intestine due to compromised tight junction barriers. In recent years, this affliction has drawn the attention of scientists from different fields, as a myriad of studies prosecuted it to be the silent culprit of various immune diseases. Due to various controversies surrounding its culpability in the clinic, approaches to leaky gut are restricted in maintaining a healthy lifestyle, avoiding irritating factors, and practicing alternative medicine, including the consumption of supplements. In the current study, we investigate the tight junction-modulating effects of processed Aloe vera gel (PAG), comprising 5-400-kD polysaccharides as the main components. Our results show that oral treatment of 143 mg/kg PAG daily for 10 days improves the age-related leaky gut condition in old mice, by reducing their individual urinal lactulose/mannitol (L/M) ratio. In concordance with in vivo experiments, PAG treatment at dose 400 µg/mL accelerated the polarization process of Caco-2 monolayers. The underlying mechanism was attributed to enhancement in the expression of intestinal tight junction-associated scaffold protein zonula occludens (ZO)-1 at the translation level. This was induced by activation of the MAPK/ERK signaling pathway, which inhibits the translation repressor 4E-BP1. In conclusion, we propose that consuming PAG as a complementary food has the potential to benefit high-risk patients.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Preparaciones de Plantas/farmacología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Animales , Biomarcadores , Línea Celular , Permeabilidad de la Membrana Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Modelos Biológicos , Transducción de Señal , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
2.
Oxid Med Cell Longev ; 2021: 6635552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953832

RESUMEN

The study was aimed at analyzing the protective effects of gintonin in an amyloid beta- (Aß-) induced Alzheimer's disease (AD) mouse model. For the development of the Aß-induced AD mouse model, the amyloid-ß (Aß 1-42) peptide was stereotaxically injected into the brains of mice. Subsequently, gintonin was administered at a dose of 100 mg/kg/day/per oral (p.o) for four weeks daily, and its effects were evaluated by using western blotting, fluorescence analysis of brain sections, biochemical tests, and memory-related behavioral evaluations. To elucidate the effects of gintonin at the mechanistic level, the activation of endogenous antioxidant mechanisms, as well as the activation of astrocytes, microglia, and proinflammatory mediators such as nuclear factor erythroid 2-related factor 2 (NRF-2) and heme oxygenase-1 (HO-1), was evaluated. In addition, microglial cells (BV-2 cells) were used to analyze the effects of gintonin on microglial activation and signaling mechanisms. Collectively, the results suggested that gintonin reduced elevated oxidative stress by improving the expression of NRF-2 and HO-1 and thereby reducing the generation of reactive oxygen species (ROS) and lipid peroxidation (LPO). Moreover, gintonin significantly suppressed activated microglial cells and inflammatory mediators in the brains of Aß-injected mice. Our findings also indicated improved synaptic and memory functions in the brains of Aß-injected mice after treatment with gintonin. These results suggest that gintonin may be effective for relieving AD symptoms by regulating oxidative stress and inflammatory processes in a mouse model of AD. Collectively, the findings of this preclinical study highlight and endorse the potential, multitargeted protective effects of gintonin against AD-associated oxidative damage, neuroinflammation, cognitive impairment, and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Glicoproteínas/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Administración Oral , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Masculino , Ratones , Extractos Vegetales/farmacología
3.
Mol Neurodegener ; 16(1): 23, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849621

RESUMEN

BACKGROUND: Recently, we and other researchers reported that brain metabolic disorders are implicated in Alzheimer's disease (AD), a progressive, devastating and incurable neurodegenerative disease. Hence, novel therapeutic approaches are urgently needed to explore potential and novel therapeutic targets/agents for the treatment of AD. The neuronal adiponectin receptor 1 (AdipoR1) is an emerging potential target for intervention in metabolic-associated AD. We aimed to validate this hypothesis and explore in-depth the therapeutic effects of an osmotin-derived adiponectin-mimetic novel nonapeptide (Os-pep) on metabolic-associated AD. METHODS: We used an Os-pep dosage regimen (5 µg/g, i.p., on alternating days for 45 days) for APP/PS1 in amyloid ß oligomer-injected, transgenic adiponectin knockout (Adipo-/-) and AdipoR1 knockdown mice. After behavioral studies, brain tissues were subjected to biochemical and immunohistochemical analyses. In separate cohorts of mice, electrophysiolocal and Golgi staining experiments were performed. To validate the in vivo studies, we used human APP Swedish (swe)/Indiana (ind)-overexpressing neuroblastoma SH-SY5Y cells, which were subjected to knockdown of AdipoR1 and APMK with siRNAs, treated with Os-pep and other conditions as per the mechanistic approach, and we proceeded to perform further biochemical analyses. RESULTS: Our in vitro and in vivo results show that Os-pep has good safety and neuroprotection profiles and crosses the blood-brain barrier. We found reduced levels of neuronal AdipoR1 in human AD brain tissue. Os-pep stimulates AdipoR1 and its downstream target, AMP-activated protein kinase (AMPK) signaling, in AD and Adipo-/- mice. Mechanistically, in all of the in vivo and in vitro studies, Os-pep rescued aberrant neuronal metabolism by reducing neuronal insulin resistance and activated downstream insulin signaling through regulation of AdipoR1/AMPK signaling to consequently improve the memory functions of the AD and Adipo-/- mice, which was associated with improved synaptic function and long-term potentiation via an AdipoR1-dependent mechanism. CONCLUSION: Our findings show that Os-pep activates AdipoR1/AMPK signaling and regulates neuronal insulin resistance and insulin signaling, which subsequently rescues memory deficits in AD and adiponectin-deficient models. Taken together, the results indicate that Os-pep, as an adiponectin-mimetic novel nonapeptide, is a valuable and promising potential therapeutic candidate to treat aberrant brain metabolism associated with AD and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores/farmacología , Receptores de Adiponectina/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/deficiencia , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/genética , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Resistencia a la Insulina , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Presenilina-1/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores de Adiponectina/genética , Transducción de Señal
4.
Artículo en Inglés | MEDLINE | ID: mdl-32158752

RESUMEN

The cell membrane-coating strategy has opened new opportunities for the development of biomimetic and multifunctional drug delivery platforms. Recently, a variety of gold nanoparticles, which can combine with blood cell membranes, have been shown to provide an effective approach for cancer therapy. Meanwhile, this class of hybrid nanostructures can deceive the immunological system to exhibit synergistic therapeutic effects. Here, we synthesized red blood cell (RBC) and platelet membrane-coated gold nanostars containing curcumin (R/P-cGNS) and evaluated whether R/P-cGNS had improved anticancer efficacy. We also validated a controlled release profile under near-infrared irradiation for the ability to target melanoma cells and to have an immunomodulatory effect on macrophages. RBC membrane coating provided self-antigens; therefore, it could evade clearance by macrophages, while platelet membrane coating provided targetability to cancer cells. Additionally, the nutraceutical curcumin provided anticancer and anti-inflammatory effects. In conclusion, the results presented in this study demonstrated that R/P-cGNS can deliver drugs to the target region and enhance anticancer effects while avoiding macrophage phagocytosis. We believe that R/P-cGNS can be a new design of the cell-based hybrid system for effective cancer therapy.

5.
Biomater Sci ; 7(12): 5187-5196, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31588457

RESUMEN

Photothermal therapy (PTT) is performed using near-infrared-responsive agents, which is proven to be an effective therapeutic strategy against cancer with several advantages including minimal invasion, high effectiveness, and easy implementation. Herein, we report a facile and novel one-pot synthetic approach for the fabrication of polydopamine-folate carbon dots (PFCDs) as theranostic nanocarriers for the image-guided PTT targeting of prostate cancer (PCa) cells that express a prostate-specific membrane antigen (PSMA) (folate hydrolase 1). The as-fabricated PFCDs exhibited several advantages such as easy preparation, high biocompatibility, low toxicity, good water-solubility, and excellent photothermal effect with robust blue fluorescence emission. The PSMA-directed imaging of PCa using PFCDs showed remarkable fluorescence enhancement in LNCap cells as compared to the case of other cells that did not express PSMA. PFCDs exhibited a photothermal effect in the PCa cells when irradiated with an 808 nm laser, which possibly resulted in the complete elimination of the tumor. Thus, these features make PFCDs a promising candidate for PTT. Moreover, PFCD-based PTT provides an effective biomedical platform for cancer therapy.


Asunto(s)
Antígenos de Superficie/metabolismo , Ácido Fólico/farmacología , Glutamato Carboxipeptidasa II/metabolismo , Hipertermia Inducida/métodos , Fototerapia/métodos , Neoplasias de la Próstata/metabolismo , Carbono/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácido Fólico/química , Humanos , Indoles/química , Masculino , Microscopía Fluorescente , Nanopartículas , Polímeros/química , Neoplasias de la Próstata/terapia
6.
Food Funct ; 10(9): 6088-6097, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490512

RESUMEN

Nonsteroidal anti-inflammatory drugs (NSAIDs) are well-known for exerting numerous adverse effects on the gastrointestinal tract such as bleeding, ulceration, and perforation, thereby limiting their use. Most previous studies have focused on NSAID-induced gastropathy. However, improved diagnostic techniques have recently highlighted NSAID-induced small intestinal ulcers, which have so far been underestimated. While proton pump inhibitors are prescribed to control NSAID-induced gastropathy, few preventive strategies are existent for NSAID-induced small intestinal injury, thus requiring new methods to treat these enteropathies. Numerous studies have reported the beneficial biological effects of Aloe vera, such as wound healing, anti-cancer, immune modulation, anti-oxidant, anti-microbial, and gastroprotective effects. A previous report on the effect of Aloe vera against NSAID-induced ulcers studied only gastric ulcers and elucidated the results as an anti-inflammatory effect of Aloe vera. However, ulcer prevention cannot be justified entirely to be due to the anti-inflammatory effects of Aloe vera, since NSAIDs themselves also exert an anti-inflammatory reaction. We therefore investigated the anti-ulcer effects of Aloe vera on the small intestine, especially focusing on mucin expression. Our results indicate that processed Aloe vera gel (PAG) treatment attenuates not only the severity of intestinal ulcers but also bacterial translocation, by enhancing the mucus layer in the indomethacin-induced small intestinal damage mouse model. We further confirmed that PAG positively regulates the mucin expression in the LS174T human cell line, mainly via the ERK-dependent pathway. We propose that PAG application is a potential strategy for the alleviation of NSAID-induced small intestinal ulcers.


Asunto(s)
Antiinflamatorios no Esteroideos/efectos adversos , Enfermedades Intestinales/tratamiento farmacológico , Intestino Delgado/lesiones , Mucinas/genética , Preparaciones de Plantas/administración & dosificación , Animales , Línea Celular , Expresión Génica/efectos de los fármacos , Humanos , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/genética , Enfermedades Intestinales/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mucinas/metabolismo , Preparaciones de Plantas/química
7.
Bioelectromagnetics ; 39(7): 539-546, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30289990

RESUMEN

Accumulating evidence does not yet confirm the effect of power line frequency magnetic field (MF) on human health and fertility. We recently reported that, at continuous 60 Hz MF exposure in mice, the dose given as magnetic flux density (tesla; T) and duration of exposure was related to induce testicular germ cell apoptosis. We aimed to characterize the effect of a 20-week continuous exposure to 60 Hz MF on the motility, morphology, and number of sperm as well as the apoptosis of testicular germ cell in rats. Sprague-Dawley rats were exposed for 20 weeks to 60 Hz MF of 2, 20, or 200 µT for 24 h/day with rats exposed to sham conditions, serving as the control. The exposure to 60 Hz MF of 2 and 20 µT had no effects on testicular in this study. The exposure to 60 Hz MF of 200 µT for 20 weeks induced increases of the apoptotic cells (P < 0.001) in germ cells and decreases of sperm numbers (P < 0.05). However, the MF did not significantly affect the body or testis mass, seminiferous tubule diameter, or the motility or morphology of sperm. This study concluded that exposure to 60 Hz MF of 200 µT can increase testicular germ cell apoptosis, especially spermatogonia, and reduce sperm count. Also compared to previous mice studies, rats are less sensitive than mice to exposure to 60 Hz MF. Bioelectromagnetics. 39:539-546, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Campos Magnéticos/efectos adversos , Testículo/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Recuento de Espermatozoides , Motilidad Espermática , Factores de Tiempo
8.
J Neuroinflammation ; 13(1): 286, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821173

RESUMEN

BACKGROUND: Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood. Here, we report for the first time the mechanism of glutamate-induced oxidative damage, neuroinflammation, and neuroprotection by polyphenolic anthocyanins in PND7. METHODS: PND7 rat brains, SH-SY5Y, and BV2 cells treated either alone with glutamate or in combination with anthocyanins and compound C were examined with Western blot and immunofluorescence techniques. Additionally, reactive oxygen species (ROS) assay and other ELISA kit assays were employed to know the therapeutic efficacy of anthocyanins against glutamate. RESULTS: A single injection of glutamate to developing rats significantly increased brain glutamate levels, activated and phosphorylated AMPK induction, and inhibited nuclear factor-E2-related factor 2 (Nrf2) after 2, 3, and 4 h in a time-dependent manner. In contrast, anthocyanin co-treatment significantly reduced glutamate-induced AMPK induction, ROS production, neuroinflammation, and neurodegeneration in the developing rat brain. Most importantly, anthocyanins increased glutathione (GSH and GSSG) levels and stimulated the endogenous antioxidant system, including Nrf2 and heme oxygenase-1 (HO-1), against glutamate-induced oxidative stress. Interestingly, blocking AMPK with compound C in young rats abolished glutamate-induced neurotoxicity. Similarly, all these experiments were replicated in SH-SY5Y cells by silencing AMPK with siRNA, which suggests that AMPK is the key mediator in glutamate-induced neurotoxicity. CONCLUSIONS: Here, we report for the first time that anthocyanins can potentially decrease glutamate-induced neurotoxicity in young rats. Our work demonstrates that glutamate is toxic to the developing rat brain and that anthocyanins can minimize the severity of glutamate-induced neurotoxicity in an AMPK-dependent manner.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antocianinas/farmacología , Antocianinas/uso terapéutico , Encefalitis/tratamiento farmacológico , Degeneración Nerviosa/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/genética , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Línea Celular Transformada , Ciclooxigenasa 2/metabolismo , Encefalitis/inducido químicamente , Activación Enzimática/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glutamina/toxicidad , Humanos , Degeneración Nerviosa/inducido químicamente , Neuroblastoma/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
PLoS One ; 9(5): e97273, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24842467

RESUMEN

Although there is accumulating evidence regarding the additional protective effect of folic acid against adverse pregnancy outcomes other than neural tube defects, these effects have not been elucidated in detail. We evaluated whether folic acid supplementation is associated with favorable maternal and fetal outcomes. This was a secondary analysis of 215 pregnant women who were enrolled in our prior study. With additional data from telephone interviews regarding prenatal folic acid supplementation, existing demographic, maternal and fetal data were statistically analyzed. The concentration of folic acid in maternal blood was significantly higher following folic acid supplementation (24.6 ng/mL vs.11.8 ng/mL). In contrast, homocysteine level in maternal blood decreased with folic acid supplementation (5.5 µmol/mL vs. 6.8 µmol/mL). The rates of both preeclampsia (odds ratio [OR], 0.27; 95% confidence interval [CI], 0.09-0.76) and small for gestational age (SGA; 9.2% vs. 20.0%; OR, 0.42; 95% CI, 0.18-0.99) were lower in the folic acid supplementation group than those in the control group. Other pregnancy outcomes had no association with folic acid supplementation. The findings indicate that folic acid supplementation may help to prevent preeclampsia and SGA. Further studies are warranted to elucidate the favorable effects of folic acid supplementation on pregnancy outcomes.


Asunto(s)
Ácido Fólico/uso terapéutico , Preeclampsia/prevención & control , Adulto , Suplementos Dietéticos , Femenino , Ácido Fólico/sangre , Humanos , Recién Nacido Pequeño para la Edad Gestacional , Modelos Logísticos , Embarazo , Resultado del Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA