Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 117(6): 1615-1627, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144753

RESUMEN

The rare ginsenosides are recognized as the functionalized molecules after the oral administration of Panax ginseng and its products. The sources of rare ginsenosides are extremely limited because of low ginsenoside contents in wild plants, hindering their application in functional foods and drugs. We developed an effective combinatorial biotechnology approach including tissue culture, immobilization, and hydrolyzation methods. Rh2 and nine other rare ginsenosides were produced by methyl jasmonate-induced culture of adventitious roots in a 10 L bioreactor associated with enzymatic hydrolysis using six ß-glycosidases and their combination with yields ranging from 5.54 to 32.66 mg L-1 . The yield of Rh2 was furthermore increased by 7% by using immobilized BglPm and Bgp1 in optimized pH and temperature conditions, with the highest yield reaching 51.17 mg L-1 (17.06% of protopanaxadiol-type ginsenosides mixture). Our combinatorial biotechnology method provides a highly efficient approach to acquiring diverse rare ginsenosides, replacing direct extraction from Panax plants, and can also be used to supplement yeast cell factories.


Asunto(s)
Ginsenósidos/metabolismo , Panax/metabolismo , Biotecnología/métodos , Ginsenósidos/química , Hidrólisis , Panax/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos
2.
J Med Food ; 20(10): 989-1001, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29040017

RESUMEN

Aralia elata (Miq) Seem (AES) is a medicinal plant used in traditional Chinese and Korean medicine for the treatment of several diseases, including diabetes. This study aimed to investigate the neuroprotective effect of AES extract against high glucose-induced retinal injury in diabetic mice. AES extract (20 and 100 mg/kg body weight) was orally administered to control mice or mice with streptozotocin-induced diabetes. Protein levels of O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT), carbohydrate-responsive element-binding protein (ChREBP), sterol regulatory element-binding protein (SREBP)-1, thioredoxin-interacting protein (TXNIP), fatty acid synthase (FAS), and acetyl CoA carboxylase (ACC) were analyzed by western blotting. Colocalization of terminal deoxynucleotide transferase-mediated dUTP nicked-end labeling (TUNEL)-positive ganglion cells and OGT, ChREBP, or TXNIP were monitored using double immunofluorescence analysis. Interaction between ChREBP and OGT was assessed using coimmunoprecipitation analysis. AES extract protected the retinas from neuronal injury and decreased levels of OGT, ChREBP, TXNIP, SREBP-1, FAS, and ACC in the diabetic retinas. AES extract reduced colocalization of TUNEL-positive ganglion cells and OGT, ChREBP, or TXNIP in the diabetic retinas. Coimmunoprecipitation analysis indicated that AES extract reduced interaction between ChREBP and OGT and attenuated ganglion cell death in diabetic retinas. Moreover, the ChREBP that colocalized with OGT or the TUNEL signal was significantly decreased in diabetic mice treated with AES extract. These findings show that AES extract can alleviate OGT-, ChREBP-, TXNIP-, or SREBP-1-related retinal injury in diabetic retinopathy.


Asunto(s)
Aralia/química , Retinopatía Diabética/tratamiento farmacológico , N-Acetilglucosaminiltransferasas/metabolismo , Extractos Vegetales/administración & dosificación , Retina/enzimología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Muerte Celular/efectos de los fármacos , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Glucosa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/genética , Retina/citología , Retina/efectos de los fármacos , Retina/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
3.
Phytother Res ; 29(10): 1634-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26179197

RESUMEN

Lupeol is a triterpenoid commonly found in fruits and vegetables and is known to exhibit a wide range of biological activities, including antiinflammatory and anti-cancer effects. However, the effects of lupeol on acute pancreatitis specifically have not been well characterized. Here, we investigated the effects of lupeol on cerulein-induced acute pancreatitis in mice. Acute pancreatitis was induced via an intraperitoneal injection of cerulein (50 µg/kg). In the lupeol treatment group, lupeol was administered intraperitoneally (10, 25, or 50 mg/kg) 1 h before the first cerulein injection. Blood samples were taken to determine serum cytokine and amylase levels. The pancreas was rapidly removed for morphological examination and used in the myeloperoxidase assay, trypsin activity assay, and real-time reverse transcription polymerase chain reaction. In addition, we isolated pancreatic acinar cells using a collagenase method to examine the acinar cell viability. Lupeol administration significantly attenuated the severity of pancreatitis, as was shown by reduced pancreatic edema, and neutrophil infiltration. In addition, lupeol inhibited elevation of digestive enzymes and cytokine levels, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and interleukin (IL)-6. Furthermore, lupeol inhibited the cerulein-induced acinar cell death. In conclusion, these results suggest that lupeol exhibits protective effects on cerulein-induced acute pancreatitis.


Asunto(s)
Antiinflamatorios/farmacología , Ceruletida , Pancreatitis/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales , Enfermedad Aguda , Amilasas , Animales , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Inyecciones Intraperitoneales , Lipasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , Páncreas/efectos de los fármacos , Pancreatitis/inducido químicamente , Peroxidasa/metabolismo , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Plant Cell Physiol ; 54(12): 2034-46, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24092881

RESUMEN

Panax species are the most popular medicinal herbs. The root of these plants contains pharmacologically active triterpene saponins, also known as ginsenosides, compounds that are divided into dammarane- and oleanane-type triterpenes. Two CYP716A subfamily genes (CYP716A47 and CYP716A53v2) were recently characterized, encoding an enzyme catalyzing the hydroxylation of dammarane-type triterpenes in Panax ginseng. Herein, we report that one CYP716A subfamily gene (CYP716A52v2) isolated from P. ginseng encodes a ß-amyrin 28-oxidase, which is suggested to modify ß-amyrin into oleanolic acid, a precursor of an oleanane-type saponin (mainly ginsenoside Ro) in P. ginseng. The ectopic expression of both PNY1 and CYP716A52v2 in recombinant yeast resulted in erythrodiol and oleanolic acid production, respectively. In vitro enzymatic activity assays biochemically confirmed that CYP716A52v2 catalyzed the oxidation of ß-amyrin to produce oleanolic acid, and the chemical structure of the oleanolic acid product was confirmed using gas chromatography-mass spectrometry (GC/MS). Transgenic P. ginseng plants were generated via Agrobacterium tumefaciens-mediated transformation: the overexpression of CYP716A52v2 greatly increased the content of oleanane-type ginsenoside (ginsenoside Ro), whereas RNA interference against CYP716A52v2 markedly reduced it. Furthermore, the levels of other dammarene-type ginsenosides were not affected in these transgenic lines. These results indicate that CYP716A52v2 is a ß-amyrin 28-oxidase that plays a key role in the biosynthesis of oleanane-type triterpenes in P. ginseng.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ginsenósidos/biosíntesis , Ácido Oleanólico/análogos & derivados , Panax/enzimología , Panax/metabolismo , Proteínas de Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Cromatografía de Gases y Espectrometría de Masas , Ácido Oleanólico/biosíntesis , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA