Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Pharmacol ; 175: 113866, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32088261

RESUMEN

Metabolic syndrome is characterized by the co-occurrence of diverse symptoms initiating the development of type 2 diabetes, cardiovascular diseases, and a variety of comorbid diseases. The complex constellation of numerous comorbidities makes it difficult to develop common therapeutic approaches that ameliorate these pathological features simultaneously. The plant hormones abscisic acid, salicylic acid, auxin, and cytokinins, have shown promising anti-inflammatory and pro-metabolic effects that could mitigate several disorders relevant to metabolic syndrome. Intriguingly, besides plants, human cells and gut microbes also endogenously produce these molecules, indicating a role in the complex interplay between inflammatory responses associated with metabolic syndrome, the gut microbiome, and nutrition. Here, we introduce how bioactive phytohormones can be generated endogenously and through the gut microbiome. These molecules subsequently influence immune responses and metabolism. We also elaborate on how phytohormones can beneficially modulate metabolic syndrome comorbidities, and propose them as nutraceuticals.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Síndrome Metabólico/tratamiento farmacológico , Reguladores del Crecimiento de las Plantas/farmacología , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Humanos , Inflamación , Síndrome Metabólico/inmunología , Síndrome Metabólico/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis
2.
Anim Sci J ; 90(7): 903-912, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31012203

RESUMEN

The value-added products in livestock industry is one of the key issues in order to maximize the revenue and to create a new business model. Numerous studies have suggested application of herbal plants as feed additives to increase health, productivity, and/or high-quality product in livestock. In this study, the first experiment was designed to develop in vitro evaluation system by using primary chicken myoblast (pCM) cells isolated from pectoralis major of 10-day-old male embryos. Subsequently, to evaluate effects of Korean Danggui Angelica gigas Nakai (AGN), we optimized the concentration of AGN root extract for treatment of primary pCM cells. After the treatment of AGN root extract, we compared proliferation and differentiation capacity, and also examined the gene expression. In the second experiment, the next generation sequencing analysis was performed to compare the different patterns of the global gene expression in pCM cells treated with AGN extract. Three up-regulated (pancreas beta cells, fatty acid metabolism and glycolysis) and one down-regulated (adipogenesis) gene sets were characterized suggesting that the AGN extract affected the metabolic pathways for the utilization of fat and glucose in chicken muscle cells. Furthermore, we validated the expression patterns of the up-regulated genes (GCLC, PTPN6, ISL1, SLC25A13, TGFBI, and YWHAH) in the AGN-treated pCM cells by quantitative RT-PCR. These results demonstrated that the treatment of AGN extract decreased proliferation and differentiation of pCM cells, and affected the metabolic pathways of glucose and fatty acids. Moreover, AGN extract derived from byproducts such as stem and leaf also showed the reduced proliferation patterns on AGN-treated pCM cells. Taken together, pCM cell-based in vitro assay system could be primarily and efficiently applied for evaluating the biofunctional efficacy of various feed additive candidates.


Asunto(s)
Angelica/química , Alimentación Animal , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Aditivos Alimentarios/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Mioblastos/metabolismo , Mioblastos/fisiología , Extractos Vegetales/farmacología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Embrión de Pollo , Pollos , Ácidos Grasos , Glucosa/metabolismo , Masculino , Músculos Pectorales/embriología , Extractos Vegetales/aislamiento & purificación
3.
Front Pharmacol ; 10: 1674, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082167

RESUMEN

INTRODUCTION: Uwhangchungsimwon (UCW) is one of the most representative standardized herbal drugs for the treatment of central nervous system diseases, including mood disorders, and has been used for over 600 years in Korea and China. In spite of the long clinical application of UCW, no experimental evidence for its use against depressive disorders exists. Here, we performed an animal study to investigate the anti-depressive effect of UCW and the underlying mechanisms. METHODS: A social isolation-induced depressive-like model was produced using C57BL/6J male mice by housing the mice individually for 31 days, and the mice underwent daily oral administration of distilled water, UCW (100, 200, 400 mg/kg) or fluoxetine (20 mg/kg) during the final 17 days. A tail suspension test (TST), forced swimming test (FST), and open field test (OFT) were used to explore the effects of UCW on depressive-like behaviors. 5-Hydroxytryptamine (5-HT) was measured in the dorsal raphe nuclei (DRN) using immunofluorescence. The serum corticosterone level was measured with its receptor and catecholamine, along with cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus. RESULTS: Social isolation stress effectively induced depressive-like behaviors, and UCW treatment significantly improved the symptoms of depressive-like behavior in the FST, TST, and OFT. The isolation stress-induced depletion of 5-HT was significantly ameliorated by UCW treatment. UCW also attenuated the activation of the glucocorticoid receptor (GR) and the elevated serum corticosterone level, as well as the hippocampal levels of dopamine and norepinephrine. Dexametasone-derived translocation of GR was inhibited by UCW treatment in PC12 cells and HT22 cells. In addition, alterations of tryptophan hydroxylase 2 (TPH2), BDNF, and CREB in the protein analyses were notably regulated by UCW treatment. CONCLUSIONS: These results provide animal-based evidence for the anti-depressive effect of UCW, and its underlying mechanisms may involve regulating the serotonergic system, the hypothalamic-pituitary-adrenal (HPA) axis, and neurotrophin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA