Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Sens ; 4(11): 2893-2899, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31525897

RESUMEN

The strong peristaltic contraction of the stomach facilitates mixing and emptying of ingested food, which occurs rhythmically at approximately 3 cycles/min (cpm) in humans. Generally, most patients with gastroparesis show gastric electrical dysrhythmia that is disrupted electrical signals controlling gastric contractions. For treatment of gastric electrical dysrhythmia, in vivo electrical impulses to the stomach via an implanted gastric stimulator have been known to restore these gastric deformations. Nevertheless, improved sensors to monitor gastric contractions are still needed in current gastric stimulators. Recently, we have developed a new technology converting mechanical motion to electrical energy by using stretch-induced capacitance changes of a coiled carbon-nanotube (CNT) yarn. For its potential use as a gastric deformation sensor, the performance of a coiled CNT yarn was evaluated in several biological fluids. For a sinusoidal stretch to 30%, the peak-to-peak open-circuit voltage (OCV) was consistently generated at frequencies below 0.1 Hz. This sinusoidal variation in OCV augmented as the strain increased from 10 to 30%. In an in vitro artificial gastric system, the OCV was approximately linearly proportional to the balloon volume, which can monitor periodic deformations of the balloon at 2, 3, and 4 cpm as shown for human gastric deformations. Moreover, stretchy coiled yarns generate the peak electrical voltage and power when deformed. The present study shows that a self-powered CNT yarn sensor can not only monitor the changes in frequency and amplitude of volumetric change but also generate electrical power by periodic deformations of the balloon. Therefore, it seems possible to automatically deliver accurate electrical impulses according to real-time evaluation of a patient's gastric deformation based on information on the frequency, amplitude, and rate of the OCV from CNT yarn.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Nanotubos de Carbono/química , Gastropatías/diagnóstico por imagen , Terapia por Estimulación Eléctrica , Electrónica , Humanos , Gastropatías/terapia
2.
Nat Commun ; 5: 3928, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24887514

RESUMEN

Biofuel cells that generate electricity from glucose in blood are promising for powering implantable biomedical devices. Immobilizing interconnected enzyme and redox mediator in a highly conducting, porous electrode maximizes their interaction with the electrolyte and minimizes diffusion distances for fuel and oxidant, thereby enhancing power density. Here we report that our separator-free carbon nanotube yarn biofuel cells provide an open-circuit voltage of 0.70 V, and a maximum areal power density of 2.18 mW cm(-2) that is three times higher than for previous carbon nanotube yarn biofuel cells. Biofuel cell operation in human serum provides high areal power output, as well as markedly increased lifetime (83% remained after 24 h), compared with previous unprotected biofuel cells. Our biscrolled yarn biofuel cells are woven into textiles having the mechanical robustness needed for implantation for glucose energy harvesting.


Asunto(s)
Fuentes de Energía Bioeléctrica , Glucemia , Nanotubos de Carbono , Textiles , Terapia por Estimulación Eléctrica/instrumentación , Diseño de Equipo , Humanos , Bombas de Infusión Implantables , Oxidación-Reducción
3.
J Ethnopharmacol ; 155(1): 744-52, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24953035

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: San-Huang-Xie-Xin-Tang (SHXXT) is a traditional Chinese medicinal formula composed of Coptidis rhizoma (Coptis chinesis Franch), Scutellariae radix (Scutellaria baicalensis Georgi), and Rhei rhizoma (Rheum officinale Baill) and is widely used in Eastern Asia, especially to ameliorate the symptoms of gastrointestinal (GI) disorders related to gastritis, gastric bleeding, peptic ulcers, and abnormal GI motility AIM OF THE STUDY: Interstitial cells of Cajal (ICCs) are pacemaker cells in the GI tract that generate rhythmic oscillations in membrane potentials known as slow waves. Because GI disorders, especially abnormal GI motility, are major lifelong problems, the authors investigated the effects of SHXXT on mouse small intestine ICCs, and sought to identify the receptors and the action mechanisms involved. MATERIALS AND METHODS: Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials generated by cultured ICCs. RESULTS: SHXXT produced membrane depolarization in current-clamp mode, and Y25130 (a 5-HT3 receptor antagonist) and RS39604 (a 5-HT4 receptor antagonist) blocked SHXXT-induced membrane depolarizations, whereas SB269970 (a 5-HT7 receptor antagonist) did not. However, during external Ca2+ free conditions or in the presence of thapsigargin, SHXXT did not exhibit membrane depolarization. Furthermore, the application of flufenamic acid (a nonselective cation channel (NSCC) blocker) or DIDS (a chloride channel blocker) abolished pacemaker potential generation and blocked SHXXT-induced membrane depolarizations. In addition, SHXXT-induced membrane depolarizations, which are dependent on G-protein, in ICCs were blocked by PD 98059 (a p42/44 mitogen-activated protein kinase (MAPK) inhibitor), SB203580 (a p38 MAPK inhibitor), and by a c-jun NH2-terminal kinase (JNK) II inhibitor. Regarding the components of SHXXT, Coptidis rhizome and Rhei rhizoma modulated ICC pacemaking activity, whereas Scutellariae radix did not. CONCLUSION: SHXXT modulates pacemaker potentials via 5-HT3 and 5-HT4 receptor-mediated pathways, external Ca2+ influx, and Ca2+ release from internal stores. Furthermore, NSCCs and Cl- channels play important roles in the regulation of pacemaking activity in a MAPK dependent manner in ICCs. The regulation of pacemaking activity by SHXXT may be due to the activity of Coptidis rhizome and Rhei rhizome. The study shows SHXXT can modulate the pacemaking activity of ICCs in the GI tract, and thus, suggests SHXXT has potential pharmacological relevance for the treatment of GI motility disorders.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Células Intersticiales de Cajal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Animales , Calcio/metabolismo , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/metabolismo , Femenino , Células Intersticiales de Cajal/metabolismo , Intestino Delgado/citología , Intestino Delgado/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Técnicas de Placa-Clamp , Receptores de Serotonina 5-HT3/metabolismo , Receptores de Serotonina 5-HT4/metabolismo
4.
J Ethnopharmacol ; 149(3): 668-75, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23911946

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Poncirus fructus (PF) has been widely used as a traditional medicine in Eastern Asia, especially to ameliorate the symptoms of gastrointestinal (GI) disorders related to abnormal GI motility. AIM OF THE STUDY: Poncirus fructus (PF), also known as Poncirus trifoliata (L.) Raf. (Rutaceae), is widely used as a traditional medicine in Eastern Asia mainly to ameliorate the symptoms of gastrointestinal (GI) disorders related to abnormal GI motility. In a previous study, a methanol extract of PF was found to have particularly potent gastroprokinetic effects. Interstitial cells of Cajal (ICCs) are pacemaker cells in the gastrointestinal tract, but the action mechanisms of PF extract in mouse small intestinal ICCs have not been investigated. Therefore, in the present study, we investigated the effects of a methanol extract of PF (MPF) in mouse small intestinal ICCs. In addition, we sought to identify the receptors involved. MATERIALS AND METHODS: Enzymatic digestions were used to dissociate ICCs from small intestines. The whole-cell patch-clamp configuration was used to record potentials (current clamp) from cultured ICCs. In addition, we analyzed intracellular Ca(2+) concentrations ([Ca(2+)]i). RESULTS: MPF decreased the amplitudes of pacemaker potentials in ICCs, and depolarized resting membrane potentials in a concentration dependent manner. Y25130 (a 5-HT3 receptor antagonist) and RS39604 (a 5-HT4 receptor antagonist) blocked MPF-induced membrane depolarizations, whereas SB269970 (a 5-HT7 receptor antagonist) did not. Pretreatment with Na(+) or Ca(2+)-free solution or thapsigargin (a Ca(2+)-ATPase inhibitor in endoplasmic reticulum) abolished the generation of pacemaker potentials and suppressed MPF-induced activity. [Ca(2+)]i analysis showed that MPF increased [Ca(2+)]i. Furthermore, treatments with PD 98059, SB203580, or JNK II inhibitor blocked MPF-induced membrane depolarizations in ICCs. CONCLUSION: These results suggest that MPF modulates pacemaker potentials through 5-HT3 and 5-HT4 receptor-mediated pathways via external Na(+) and Ca(2+) influx, and via Ca(2+) release from internal stores in a mitogen-activated protein kinase dependent manner. The study shows MPF is a good candidate for the development of a gastroprokinetic agent. In view of the effects of MPF on ICCs, further research is required, particularly to identify the active compound(s) involved and to determine their action mechanisms.


Asunto(s)
Motilidad Gastrointestinal/efectos de los fármacos , Células Intersticiales de Cajal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Extractos Vegetales/farmacología , Poncirus/química , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Frutas/química , Células Intersticiales de Cajal/metabolismo , Células Intersticiales de Cajal/fisiología , Intestino Delgado/citología , Intestino Delgado/metabolismo , Intestino Delgado/fisiología , Masculino , Medicina Tradicional de Asia Oriental , Mesotelina , Ratones , Ratones Endogámicos BALB C , Técnicas de Placa-Clamp , Extractos Vegetales/aislamiento & purificación , Receptores de Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA