Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadl0999, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536912

RESUMEN

Direct imaging of neuronal activity (DIANA) by functional magnetic resonance imaging (fMRI) could be a revolutionary approach for advancing systems neuroscience research. To independently replicate this observation, we performed fMRI experiments in anesthetized mice. The blood oxygenation level-dependent (BOLD) response to whisker stimulation was reliably detected in the primary barrel cortex before and after DIANA experiments; however, no DIANA-like fMRI peak was observed in individual animals' data with the 50 to 300 trials. Extensively averaged data involving 1050 trials in six mice showed a flat baseline and no detectable neuronal activity-like fMRI peak. However, spurious, nonreplicable peaks were found when using a small number of trials, and artifactual peaks were detected when some outlier-like trials were excluded. Further, no detectable DIANA peak was observed in the BOLD-responding thalamus from the selected trials with the neuronal activity-like reference function in the barrel cortex. Thus, we were unable to replicate the previously reported results without data preselection.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Ratones , Animales , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Oxígeno , Mapeo Encefálico/métodos
2.
Sci Rep ; 14(1): 6302, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491035

RESUMEN

Multisensory integration is necessary for the animal to survive in the real world. While conventional methods have been extensively used to investigate the multisensory integration process in various brain areas, its long-range interactions remain less explored. In this study, our goal was to investigate interactions between visual and somatosensory networks on a whole-brain scale using 15.2-T BOLD fMRI. We compared unimodal to bimodal BOLD fMRI responses and dissected potential cross-modal pathways with silencing of primary visual cortex (V1) by optogenetic stimulation of local GABAergic neurons. Our data showed that the influence of visual stimulus on whisker activity is higher than the influence of whisker stimulus on visual activity. Optogenetic silencing of V1 revealed that visual information is conveyed to whisker processing via both V1 and non-V1 pathways. The first-order ventral posteromedial thalamic nucleus (VPM) was functionally affected by non-V1 sources, while the higher-order posterior medial thalamic nucleus (POm) was predominantly modulated by V1 but not non-V1 inputs. The primary somatosensory barrel field (S1BF) was influenced by both V1 and non-V1 inputs. These observations provide valuable insights for into the integration of whisker and visual sensory information.


Asunto(s)
Imagen por Resonancia Magnética , Tálamo , Ratones , Animales , Tálamo/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiología , Vibrisas/fisiología
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042795

RESUMEN

To further advance functional MRI (fMRI)-based brain science, it is critical to dissect fMRI activity at the circuit level. To achieve this goal, we combined brain-wide fMRI with neuronal silencing in well-defined regions. Since focal inactivation suppresses excitatory output to downstream pathways, intact input and suppressed output circuits can be separated. Highly specific cerebral blood volume-weighted fMRI was performed with optogenetic stimulation of local GABAergic neurons in mouse somatosensory regions. Brain-wide spontaneous somatosensory networks were found mostly in ipsilateral cortical and subcortical areas, which differed from the bilateral homotopic connections commonly observed in resting-state fMRI data. The evoked fMRI responses to somatosensory stimulation in regions of the somatosensory network were successfully dissected, allowing the relative contributions of spinothalamic (ST), thalamocortical (TC), corticothalamic (CT), corticocortical (CC) inputs, and local intracortical circuits to be determined. The ventral posterior thalamic nucleus receives ST inputs, while the posterior medial thalamic nucleus receives CT inputs from the primary somatosensory cortex (S1) with TC inputs. The secondary somatosensory cortex (S2) receives mostly direct CC inputs from S1 and a few TC inputs from the ventral posterolateral nucleus. The TC and CC input layers in cortical regions were identified by laminar-specific fMRI responses with a full width at half maximum of <150 µm. Long-range synaptic inputs in cortical areas were amplified approximately twofold by local intracortical circuits, which is consistent with electrophysiological recordings. Overall, whole-brain fMRI with optogenetic inactivation revealed brain-wide, population-based, long-range circuits, which could complement data typically collected in conventional microscopic functional circuit studies.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Optogenética/métodos , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/tendencias , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiología , Neuroimagen/métodos , Neuronas/fisiología , Tálamo/fisiología
4.
Sci Rep ; 6: 31464, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27510406

RESUMEN

Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.


Asunto(s)
Colina/metabolismo , Glaucoma/complicaciones , Trastornos de la Visión/diagnóstico por imagen , Corteza Visual/diagnóstico por imagen , Anciano , Femenino , Glaucoma/diagnóstico por imagen , Glaucoma/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen Multimodal , Índice de Severidad de la Enfermedad , Tomografía de Coherencia Óptica , Trastornos de la Visión/metabolismo , Corteza Visual/metabolismo , Pruebas del Campo Visual
5.
Neuroimage ; 27(2): 416-24, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15923128

RESUMEN

The spatial specificity of functional magnetic resonance imaging (fMRI) signals to columnar architecture remains uncertain. At columnar resolution, the specificity of intrinsic cerebral blood volume (CBV) response to orientation-selective columns in isoflurane-anesthetized cats was determined for CBV-weighted fMRI signals after injection of iron oxide at a dose of 10 mg Fe/kg. CBV-weighted fMRI data were acquired at 9.4 T with an in-plane resolution of 156 x 156 microm(2) in area 18 during visual stimulation at two orthogonal orientations. A 1-mm-thick imaging slice was selected tangential to the cortical surface. Regions with large CBV changes in response to two orthogonal orientation gratings were highly complementary. Maps of iso-orientation domains in response to these gratings were highly reproducible, suggesting that CBV-weighted fMRI has high sensitivity and specificity. The average distance between iso-orientation domains was 1.37+/- 0.28 mm (n=10 orientations) in an anterior-posterior direction. CBV-weighted fMRI signal change in the iso-orientation domains induced by preferred orientation was 1.69+/- 0.24 (n=10) times larger than that induced by orthogonal orientation. Our data demonstrate that CBV regulates at a submillimeter columnar scale and CBV-weighted fMRI has sufficient specificity to map columnar organization in animals.


Asunto(s)
Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética , Percepción Espacial/fisiología , Corteza Visual/irrigación sanguínea , Corteza Visual/fisiología , Animales , Mapeo Encefálico , Gatos , Femenino , Compuestos Férricos , Lateralidad Funcional/fisiología , Hemodinámica/fisiología , Microesferas , Estimulación Luminosa , Reproducibilidad de los Resultados , Visión Binocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA