RESUMEN
Sichuan pepper (Zanthoxylum armatum DC) is a popular spice and is often prescribed in traditional Chinese medicine to treat vomiting, diarrhea, ascariasis and eczema, among other conditions. Volatile oils from Z. armatum leaves contain active ingredients, with terpenoids being one of the main components. In the present study, the combination of sequencing data of Z. armatum from PacBio single molecule real time (SMRT) and Illumina RNA sequencing (RNA-Seq) platforms facilitated an understanding of the gene regulatory network of terpenoid biosynthesis in pepper leaves. The leaves of three developmental stages from two Z. armatum cultivars, 'Rongchangwuci' (WC) and 'Zhuye' (ZY), were selected as test materials to construct sequencing libraries. A total of 143,122 predictions of unique coding sequences, 105,465 simple sequence repeats, 20,145 transcription factors and 4719 long non-coding RNAs (lncRNAs) were identified, and 142,829 transcripts were successfully annotated. The occurrence of alternative splicing events was verified by reverse transcription PCR, and quantitative real-time PCR was used to confirm the expression pattern of six randomly selected lncRNAs. A total of 96,931 differentially expressed genes were filtered from different samples. According to functional annotation, a total of 560 candidate genes were involved in terpenoid synthesis, of which 526 were differentially expressed genes (DEGs). To identify the key genes involved in terpenoid biosynthesis, the module genes in different samples, including structural and transcription factors genes, were analyzed using the weighted gene co-expression network method, and the co-expression network of genes was constructed. Thirty-one terpenoids were identified by gas chromatography-mass spectrometry. The correlation between 18 compounds with significantly different contents and genes with high connectivity in the module was jointly analyzed in both cultivars, yielding 12 candidate DEGs presumably involved in the regulation of terpenoid biosynthesis. Our findings showed that full-length transcriptome SMRT and Illumina RNA-Seq can play an important role in studying organisms without reference genomes and elucidating the gene regulation of a biosynthetic pathway.
Asunto(s)
Zanthoxylum , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , ARN/metabolismo , Análisis de Secuencia de ARN , Terpenos/metabolismo , Transcriptoma , Zanthoxylum/genética , Zanthoxylum/metabolismoRESUMEN
2-C-Methyl-d-erythrol-4-phosphate (MEP) pathway in plant supplies isoprene building blocks for carotenoids and chlorophylls essential in photosynthesis as well as plant hormones such as gibberellin and abscisic acid. To assess the effect of overexpression of the terminal enzyme of the MEP pathway, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR), transgenic Nicotiana tabacum overexpressing class 2 HDR from Ginkgo biloba (GbHDR2) under the control of 35S promoter was constructed. Contents of chlorophylls a and b in transgenic tobacco were enhanced by 19 and 7%, respectively, compared to those of the wild type. The carotenoid level was also 18% higher than that in the control plant. As a result, photosynthetic rate of the transgenic tobacco was increased by up to 51%. Diterepenoid duvatrienediol content of transgenic tobacco was also elevated by at least sixfold. To explore the molecular basis of the enhanced isoprenoid accumulation, transcript levels of the key genes involved in the isoprenoid biosynthesis were measured. Transcript levels of geranylgeranyl diphosphate synthase (GGPP), kaurene synthase (KS), gibberellic acid 20 oxidase (GA20ox), and phytoene desaturase (PD) genes in the transgenic tobacco leaves were about twofold higher compared to the wild type. Therefore, upregulation of down-stream genes involved in biosynthesis of di- and tetraterpenoids due to GbHDR2 overexpression was responsible for elevated production of isoprenoids and enhanced photosynthetic rate. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02887-5.
RESUMEN
BACKGROUND: Ginkgo biloba, a typical dioecious plant, is a traditional medicinal plant widely planted. However, it has a long juvenile period, which severely affected the breeding and cultivation of superior ginkgo varieties. RESULTS: In order to clarify the complex mechanism of sexual differentiation in G. biloba strobili. Here, a total of 3293 miRNAs were identified in buds and strobili of G. biloba, including 1085 known miRNAs and 2208 novel miRNAs using the three sequencing approaches of transcriptome, small RNA, and degradome. Comparative transcriptome analysis screened 4346 and 7087 differentially expressed genes (DEGs) in male buds (MB) _vs_ female buds (FB) and microstrobilus (MS) _vs_ ovulate strobilus (OS), respectively. A total of 6032 target genes were predicted for differentially expressed miRNA. The combined analysis of both small RNA and transcriptome datasets identified 51 miRNA-mRNA interaction pairs that may be involved in the process of G. biloba strobili sexual differentiation, of which 15 pairs were verified in the analysis of degradome sequencing. CONCLUSIONS: The comprehensive analysis of the small RNA, RNA and degradome sequencing data in this study provided candidate genes and clarified the regulatory mechanism of sexual differentiation of G. biloba strobili from multiple perspectives.
Asunto(s)
Flores/crecimiento & desarrollo , Flores/genética , Flores/ultraestructura , Ginkgo biloba/genética , MicroARNs/genética , ARN de Planta/genética , Diferenciación Sexual/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ginkgo biloba/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Análisis de Secuencia de ARN , TranscriptomaRESUMEN
To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 µg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.
Asunto(s)
Carboxiliasas/metabolismo , Geraniltranstransferasa/metabolismo , Panax/metabolismo , Triterpenos/metabolismo , Carboxiliasas/genética , Cromatografía de Gases y Espectrometría de Masas , Geraniltranstransferasa/genética , Ingeniería Metabólica , Panax/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Biología Sintética , Triterpenos/química , Regulación hacia ArribaRESUMEN
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the rate-limiting step in the mevalonate pathway. To elucidate the functions of HMGR in triterpene biosynthesis, Platycodon grandiflorum was transformed with a construct expressing Panax ginseng HMGR (PgHMGR). We used PCR analysis to select transformed hairy root lines and selected six lines for further investigation. Quantitative real-time PCR showed higher expression levels of HMGR and total platycoside levels (1.5-2.5-fold increase) in transgenic lines than in controls. Phytosterols levels were also 1.1-1.6-fold higher in transgenic lines than in controls. Among these lines, line T7 produced the highest level of total platycosides (1.60 ± 0.2 mg g(-1) dry weight) and α-spinasterol (1.78 ± 0.16 mg g(-1) dry weight). These results suggest that metabolic engineering of P. grandiflorum by Agrobacterium-mediated genetic transformation may enhance production of phytosterols and triterpenoids.
Asunto(s)
Acilcoenzima A/genética , Campanulaceae/metabolismo , Panax/enzimología , Fitosteroles/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Triterpenos/metabolismo , Acilcoenzima A/metabolismo , Campanulaceae/genética , Células Cultivadas , Expresión Génica , Panax/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Plantas Modificadas Genéticamente/genéticaRESUMEN
Valerian (Valeriana officinalis) is a popular medicinal plant in North America and Europe. Its root extract is commonly used as a mild sedative and anxiolytic. Among dozens of chemical constituents (e.g. alkaloids, iridoids, flavonoids, and terpenoids) found in valerian root, valerena-4,7(11)-diene and valerenic acid (C15 sesquiterpenoid) have been suggested as the active ingredients responsible for the sedative effect. However, the biosynthesis of the valerena-4,7(11)-diene hydrocarbon skeleton in valerian remains unknown to date. To identify the responsible terpene synthase, next-generation sequencing (Roche 454 pyrosequencing) was used to generate â¼ 1 million transcript reads from valerian root. From the assembled transcripts, two sesquiterpene synthases were identified (VoTPS1 and VoTPS2), both of which showed predominant expression patterns in root. Transgenic yeast expressing VoTPS1 and VoTPS2 produced germacrene C/germacrene D and valerena-4,7(11)-diene, respectively, as major terpene products. Purified VoTPS1 and VoTPS2 recombinant enzymes confirmed these activities in vitro, with competent kinetic properties (K(m) of â¼ 10 µm and k(cat) of 0.01 s(-1) for both enzymes). The structure of the valerena-4,7(11)-diene produced from the yeast expressing VoTPS2 was further substantiated by (13) C-NMR and GC-MS in comparison with the synthetic standard. This study demonstrates an integrative approach involving next-generation sequencing and metabolically engineered microbes to expand our knowledge of terpenoid diversity in medicinal plants.
Asunto(s)
Sesquiterpenos/metabolismo , Valeriana/enzimología , Secuencia de Bases , Ciclización , Cartilla de ADN , ADN Complementario , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Reacción en Cadena de la PolimerasaRESUMEN
Diterpene trilactone ginkgolides, one of the major constituents of Ginkgo biloba extract, have shown interesting bioactivities including platelet-activating factor antagonistic activity. 1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS), converting 2-C-methyl-d-erythritol-2,4-cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate, is the penultimate enzyme of the seven-step 2-C-methyl-d-erythritol 4-phosphate pathway that supplies building blocks for plant isoprenoids of plastid origin such as ginkgolides and carotenoids. Here, we report on the isolation and characterization of the full-length cDNA encoding HDS (GbHDS, GenBank accession number: DQ251630) from G. biloba. Full-length cDNA of GbHDS, 2,763 bp long, contained an ORF of 2,226 bp encoding a protein composed of 741 amino acids. The theoretical molecular weight and pI of the deduced mature GbHDS of 679 amino acid residues are 75.6 kDa and 5.5, respectively. From 2 weeks after initiation of the culture onward, transcription level of this gene in the ginkgo embryo roots increased to about two times higher than that in the leaves. GbHDS was predicted to possess chloroplast transit peptide of 62 amino acid residues, suggesting its putative localization in the plastids. The transient gene expression in Arabidopsis protoplasts confirmed that the transit peptide was capable of delivering the GbHDS protein from the cytosol into the chloroplasts. The isolation and characterization of GbHDS gene enabled us to further understand the role of GbHDS in the terpenoid biosynthesis in G. biloba.
Asunto(s)
Enzimas/genética , Ginkgo biloba/genética , Clonación Molecular , ADN Complementario/aislamiento & purificación , Enzimas/aislamiento & purificación , Enzimas/metabolismo , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ginkgo biloba/metabolismo , Ginkgólidos/metabolismo , Modelos Biológicos , Filogenia , Análisis de Secuencia de ADNRESUMEN
Amorpha-4,11-diene synthase (ADS) of Artemisia annua L. is a sesquiterpene cyclase that catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene in the biosynthesis of the antimalarial artemisinin. To explore the mechanisms regulating the tissue-specific and developmental distributions of ADS, a full ADS promoter was generated using PCR, and fused to GUS for introduction into Arabidopsis thaliana. ADSpro::GUS fusion transcripts were organ-specific, mainly present in the anthers and trichomes of the green tissues of the juvenile leaves. This result was consistent with the ADS transcription pattern observed in A. annua as examined by RT-PCR. To determine the subcellular localization of ADS, an open reading frame (ORF) of ADS was fused to the green fluorescent protein (smGFP) gene and introduced into the A. thaliana protoplasts. GFP fluorescence was located exclusively in the cytosol, an indication that ADS is a cytosol-localized protein.
Asunto(s)
Transferasas Alquil y Aril/genética , Arabidopsis/enzimología , Regiones Promotoras Genéticas , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Cartilla de ADN , Flores/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Hojas de la Planta/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/enzimologíaRESUMEN
Cyclization of farnesyl diphosphate into amorpha-4,11-diene by amorpha-4,11-diene synthase (ADS) initiates biosynthesis of artemisinin, a clinically important antimalarial drug precursor. Three possible ring-closure mechanisms, two involving a bisabolyl carbocation intermediate followed by either a 1,3-hydride shift or two successive 1,2-shifts, and one involving a germacrenyl carbocation, were proposed and tested by analyzing the fate of farnesyl diphosphate H-1 hydrogen atoms through (1)H and (2)H NMR spectroscopy. Migration of one deuterium atom of [1,1-(2)H(2)]farnesyl diphosphate to H-10 of amorpha-4,11-diene singled out the bisabolyl carbocation mechanism with a 1,3-hydride shift. Further confirmation was obtained through enzyme reactions with (1R)- and (1S)-[1-(2)H]farnesyl diphosphate. Results showed that deuterium of the 1R compound remained at H-6, whereas that of the 1S compound migrated to H-10 of amorpha-4,11-diene. Incorporation of one deuterium into amorphadiene in the cyclization process was observed when the reaction was performed in (2)H(2)O, as evidenced by an increase of 1 amu in the mass of the molecular ion.
Asunto(s)
Transferasas Alquil y Aril/metabolismo , Artemisia/enzimología , Artemisininas/metabolismo , Plantas Medicinales/enzimología , Sesquiterpenos/metabolismo , Ciclización , Deuterio/química , Deuterio/metabolismo , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Fosfatos de Poliisoprenilo/síntesis química , EstereoisomerismoRESUMEN
Diterpenoid ginkgolides having potent platelet-activating factor antagonist activity are major active ingredients of ginkgo extract. Class 2-type 1-deoxy-D-xylulose 5-phosphate synthase (GbDXS2) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (GbDXR), the first two enzymes in 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, operating in the earlier step of ginkgolide biosynthesis, were cloned from embryonic roots of Ginkgo biloba through a homology-based polymerase chain reaction for role assessment of the enzymes. Plasmids harboring each gene rescued the respective knockout E. coli mutants. The levopimaradiene synthase gene (LPS), responsible for the first committed step in ginkgolide biosynthesis, and GbDXS2 were transcribed exclusively in embryonic root, suggesting a specific role of GbDXS2 in ginkgolide biosynthesis. GbDXR retained a higher transcription level in roots than in leaves, whereas class 1 DXS (GbDXS1) showed 30 to 50 % higher level in leaves. Ginkgolides and bilobalide were found both in leaves and roots from an earlier stage of the embryo culture. Exclusive transcription of ginkgolide biosynthesis-specific LPS and GbDXS2 in roots and the appearance of ginkgolides in leaves was consistent with translocation of the compounds from roots to leaves.
Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Ginkgo biloba/genética , Ginkgólidos/metabolismo , Complejos Multienzimáticos/genética , Oxidorreductasas/genética , Fitoterapia , Transferasas/genética , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , ADN de Plantas/química , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ginkgo biloba/enzimología , Ginkgo biloba/metabolismo , Humanos , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Filogenia , Hojas de la Planta , Raíces de Plantas , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Técnicas de Cultivo de Tejidos , Transferasas/química , Transferasas/metabolismoRESUMEN
Relative transcript levels of eight rice diterpene cyclases at the branch points of gibberellins and phytoalexins biosynthesis pathway were measured by reverse transcription quantitative PCR. Metabolic flux analysis by the distribution ratio of common substrate showed that UV-irradiation of etiolated rice seedlings decreased the flux for primary metabolism of gibberellins biosynthesis by half (from 62 to 27%) and 41% of geranylgeranyl pyrophosphate was used for induction of pimaradiene intermediate as the major phytoalexin. In comparison, light-illumination used almost all geranylgeranyl pyrophosphate (96%) for gibberellin biosynthesis to stimulate the plant growth and strongly repressed the metabolic flux for phytoalexins biosynthesis.
Asunto(s)
Diterpenos/metabolismo , Oryza/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas/biosíntesis , Isomerasas/genética , Isomerasas/metabolismo , Modelos Biológicos , Oryza/enzimología , Oryza/genética , Extractos Vegetales/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sesquiterpenos , Especificidad por Sustrato , Terpenos , FitoalexinasRESUMEN
The cytotoxicity of compounds derived from the aerial parts of Saururus chinensis towards 24 cancer model and six normal cell lines was examined by MTT assay and compared with those of the anticancer agents cisplatin and doxorubicin. The active principles were characterized as the neolignans manassantin A, and its erythro, erythro- and threo, erythro-epimers by spectroscopic analysis. Manassantin A was isolated from S. chinensis as a new cytotoxic principle. Its two epimers were isolated for the first time in nature. The neolignans were more active than cisplatin and doxorubicin, with IC50 values of the neolignans, cisplatin, and doxorubicin against SK-Hep-1, PC-3, DU-145, BT-20, SK-BR-3, T-47D, Hela, T98G, and SK-MEL-28 cancer cell lines, in the ranges 0.018-0.423, 1.175-7.922, and 0.131- >50 microg/mL, respectively. Manassantin A and its threo, erythro-epimer were equicytotoxic towards model cancer cell lines. threo, erythro-Manassantin A was more active than erythro, erythro-manassantin A. Additionally, these three neolignans (IC50 > 10 microg/mL) had very low cytotoxicity towards six normal cell lines, whereas cisplatin (IC50 2.846-0.825 microg/mL) and doxorubicin (IC50 5.222-0.008 microg/mL) exhibited potent cytotoxic effects. Structure-activity relationships indicate that the hydroxy moiety appears to be essential for cytotoxicity. These neolignans merit further study as potential anticancer agents or as leads.