Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 134: 106466, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934691

RESUMEN

Actinidia polygama has been used as a traditional medicine for treating various diseases. In the present study, 13 compounds, including three new monoterpenoids (1-3), were isolated from the leaves of A. polygama to investigate the bioactive constituents of the plant. The structures were characterized by analyzing spectroscopic and chiroptical data. These compounds were preliminarily screened for their ability to increase insulin secretion levels after glucose stimulation. Of these, 3-O-coumaroylmaslinic acid (4) and jacoumaric acid (5) showed activity. In further biological studies, these compounds exhibited increased glucose-stimulated insulin secretion (GSIS) activity without cytotoxicity in rat INS-1 pancreatic ß-cells as well as α-glucosidase inhibitory activity. Furthermore, both compounds increased insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), pancreatic and duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression. Hence, these compounds may be developed as potential antidiabetic agents.


Asunto(s)
Actinidia , alfa-Glucosidasas , Ratas , Animales , Secreción de Insulina , alfa-Glucosidasas/metabolismo , Actinidia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glucosa/metabolismo , Insulina/metabolismo
2.
Phytomedicine ; 103: 154209, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35689901

RESUMEN

BACKGROUND: Leaky gut symptoms and inflammatory bowel disease (IBD) are associated with damaged intestinal mucosa, intestinal permeability dysfunction by epithelial cell cytoskeleton contraction, disrupted intercellular tight junction (TJ) protein expression, and abnormal immune responses and are intractable diseases. PURPOSE: We evaluated the effects of schisandrin C, a dibenzocyclooctadiene lignan from Schisandra chinensis, on intestinal inflammation and permeability dysfunction in gut mimetic systems: cultured intestinal cells, intestinal organoids, and a Caenorhabditis elegans model. METHODS: Schisandrin C was selected from 9 lignan compounds from S. chinensis based on its anti-inflammatory effects in HT-29 human intestinal cells. IL-1ß and Pseudomonas aeruginosa supernatants were used to disrupt intestinal barrier formation in vitro and in C. elegans, respectively. The effects of schisandrin C on transepithelial electrical resistance (TEER) and intestinal permeability were evaluated in intestinal cell monolayers, and its effect on intestinal permeability dysfunction was tested in mouse intestinal organoids and C. elegans by measuring fluorescein isothiocyanate (FITC)-dextran efflux. The effect of schisandrin C on TJ protein expression was investigated by western blotting and fluorescence microscopy. The signaling pathway underlying these effects was also elucidated. RESULTS: Schisandrin C ameliorated intestinal permeability dysfunction in three IBD model systems and enhanced epithelial barrier formation via upregulation of ZO-1 and occludin in intestinal cell monolayers and intestinal organoids. In Caco-2 cells, schisandrin C restored IL-1ß-mediated increases in MLCK and p-MLC expression, in turn blocking cytoskeletal contraction and subsequent intestinal permeabilization. Schisandrin C inhibited NF-ĸB and p38 MAPK signaling, which regulates MLCK expression and structural reorganization of the TJ complex in Caco-2 cells. Schisandrin C significantly improved abnormal FITC-dextran permeabilization in both intestinal organoids and C. elegans. CONCLUSION: Schisandrin C significantly improves abnormal intestinal permeability and regulates the expression of TJ proteins, long MLCK, p-MLC, and inflammation-related proteins, which are closely related to leaky gut symptoms and IBD development. Therefore, schisandrin C is a candidate to treat leaky gut symptoms and IBDs.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Lignanos , Animales , Células CACO-2 , Caenorhabditis elegans/metabolismo , Ciclooctanos , Humanos , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa Intestinal/metabolismo , Lignanos/farmacología , Ratones , Quinasa de Cadena Ligera de Miosina/metabolismo , Organoides/metabolismo , Permeabilidad , Compuestos Policíclicos , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas
3.
Oncotarget ; 8(24): 39367-39381, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28455965

RESUMEN

Individualizing adjuvant chemotherapy is important in patients with advanced colorectal cancers (CRCs), and the ability to identify molecular subtypes predictive of good prognosis for stage III CRCs after adjuvant chemotherapy could be highly beneficial. We performed microarray-based gene expression analysis on 101 fresh-frozen primary samples from patients with stage III CRCs treated with FOLFOX adjuvant chemotherapy and 35 matched non-neoplastic mucosal tissues. CRC samples were classified into four molecular subtypes using nonnegative matrix factorization, and for comparison, we also grouped CRC samples using the proposed consensus molecular subtypes (CMSs). Of the 101 cases, 80 were classified into a CMS group, which shows a 79% correlation between the CMS classification and our four molecular subtypes. We found that two of our subtypes showed significantly higher disease-free survival and overall survival than the others. Group 2, in particular, which showed no disease recurrence or death, was characterized by high microsatellite instability (MSI-H, 6/21), abundant mucin production (12/21), and right-sided location (12/21); this group strongly correlated with CMS1 (microsatellite instability immune type). We further identified the molecular characteristics of each group and selected 10 potential biomarker genes from each. When these were compared to the previously reported molecular classifier genes, we found that 31 out of 40 selected genes were matched with those previously reported. Our findings indicate that molecular classification can reveal specific molecular subtypes correlating with clinicopathologic features of CRCs and can have predictive value for the prognosis for stage III CRCs with FOLFOX adjuvant chemotherapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor , Quimioterapia Adyuvante , Análisis por Conglomerados , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Biología Computacional , Femenino , Fluorouracilo/efectos adversos , Fluorouracilo/uso terapéutico , Perfilación de la Expresión Génica , Humanos , Leucovorina/efectos adversos , Leucovorina/uso terapéutico , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Compuestos Organoplatinos/efectos adversos , Compuestos Organoplatinos/uso terapéutico , Pronóstico , Análisis de Supervivencia , Transcriptoma , Resultado del Tratamiento
4.
Int J Hyperthermia ; 27(5): 445-52, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21756042

RESUMEN

PURPOSE: Hyperthermia-induced apoptosis is mediated by mitochondrial pathway, and is temporally correlated with alterations in mitochondrial morphology in neuroepithelial cells. In addition, regular exercise up-regulates heat shock proteins (HSPs) that inhibit apoptosis. However, embryo-protective effects of maternal exercise against heat exposure during pregnancy have not been fully understood yet. MATERIALS AND METHODS: To investigate the role of maternal exercise in protecting embryos from hyperthermia, we measured apoptosis-related factors and HSPs in Hsp70 knockout mouse embryos. Pregnant mice were divided into control, exercise, hyperthermia-after-exercise, and hyperthermia groups. Where appropriate the swimming exercise was performed for 5-10 min/day from embryonic day (ED) 1 to ED 8, and hyperthermia (43°C, 5 min) was induced on ED 8. To characterise the effects of maternal exercise on apoptosis-related factors and HSPs, we performed western blotting and transmission electron microscopy. RESULTS: Caspase-9, -7, -3 and Bax were down-regulated in the hyperthermia-after-exercise group and Bcl-2, Hsp27 and Hsp110 were up-regulated. The number of apoptotic cells was markedly reduced in the hyperthermia-after-exercise group. CONCLUSIONS: Maternal exercise plays an important role in inhibiting apoptotic cell death in embryos against hyperthermic exposure during pregnancy.


Asunto(s)
Apoptosis/fisiología , Encéfalo/embriología , Proteínas de Choque Térmico/biosíntesis , Hipertermia Inducida , Actividad Motora , Natación , Animales , Caspasas/biosíntesis , Femenino , Proteínas del Choque Térmico HSP110/biosíntesis , Proteínas de Choque Térmico HSP27/biosíntesis , Proteínas HSP70 de Choque Térmico/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Proteína X Asociada a bcl-2/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA