Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 124: 155306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176270

RESUMEN

BACKGROUND: Most bacteria and fungi form biofilms that attach to living or abiotic surfaces. These biofilms diminish the efficacy of antimicrobial agents and contribute to chronic infections. Furthermore, multispecies biofilms composed of bacteria and fungi are often found at chronic infection sites. PURPOSE: In this study, lawsone (2­hydroxy-1,4-naphthoquinone) and its parent 1,4-naphthoquinone were studied for antimicrobial and antibiofilm activities against single-species and multispecies biofilms of enterohemorrhagic Escherichia coli O157:H7 (EHEC) and Candida albicans. METHODS: Biofilm formation assays, biofilm eradication assays, antimicrobial assays, live cell imaging microscopy, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), extracellular polymeric substances and indole production, cell surface hydrophilicity assay, cell motility, cell aggregation, hyphal growth, dual species biofilm formation, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and toxicity assays on plant seed germination and nematode model were utilized to investigate how lawsone affect biofilm development. RESULTS: Sub-inhibitory concentrations of lawsone (35 µg/ml) significantly inhibited single-and multispecies biofilm development. Lawsone reduced the production of curli and indole, and the swarming motility of EHEC, efficiently inhibited C. albicans cell aggregation and hyphal formation, and increased the cell surface hydrophilicity of C. albicans. Transcriptomic analysis showed that lawsone suppressed the expression of the curli-related genes csgA and csgB in EHEC, and the expression of several hypha- and biofilm-related genes (ALS3, ECE1, HWP1, and UME6) in C. albicans. In addition, lawsone up to 100 µg/ml was nontoxic to the nematode Caenorhabditis elegans and to the seed growth of Brassica rapa and Triticum aestivum. CONCLUSION: These results show that lawsone inhibits dual biofilm development and suggest that it might be useful for controlling bacterial or fungal infections and multispecies biofilms.


Asunto(s)
Antiinfecciosos , Escherichia coli O157 , Naftoquinonas , Candida albicans , Biopelículas , Indoles/farmacología
2.
Microb Biotechnol ; 15(2): 590-602, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34156757

RESUMEN

Biofilms are communities of bacteria, fungi or yeasts that form on diverse biotic or abiotic surfaces, and play important roles in pathogenesis and drug resistance. A generic saw palmetto oil inhibited biofilm formation by Staphylococcus aureus, Escherichia coli O157:H7 and fungal Candida albicans without affecting their planktonic cell growth. Two main components of the oil, lauric acid and myristic acid, are responsible for this antibiofilm activity. Their antibiofilm activities were observed in dual-species biofilms as well as three-species biofilms of S. aureus, E. coli O157:H7 and C. albicans. Transcriptomic analysis showed that lauric acid and myristic acid repressed the expressions of haemolysin genes (hla and hld) in S. aureus, several biofilm-related genes (csgAB, fimH and flhD) in E. coli and hypha cell wall gene HWP1 in C. albicans, which supported biofilm inhibition. Also, saw palmetto oil, lauric acid and myristic acid reduced virulence of three microbes in a nematode infection model and exhibited minimal cytotoxicity. Furthermore, combinatorial treatment of fatty acids and antibiotics showed synergistic antibacterial efficacy against S. aureus and E. coli O157:H7. These results demonstrate that saw palmetto oil and its main fatty acids might be useful for controlling bacterial infections as well as multispecies biofilms.


Asunto(s)
Escherichia coli O157 , Staphylococcus aureus , Antibacterianos/farmacología , Biopelículas , Candida albicans , Ácidos Láuricos/farmacología , Ácido Mirístico/farmacología , Extractos Vegetales , Serenoa
3.
Phytomedicine ; 91: 153710, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34461422

RESUMEN

BACKGROUND: Cutibacterium acnes is a major colonizer and inhabitant of human skin and contributes to the pathogenesis of acne vulgaris. C. acnes either alone or with Staphylococcus aureus, which also inhabits skin, readily forms biofilms that are often tolerant of conventional antibiotics and the host immune system. It was hypothesized that the amphiphilic nature of some fatty acids (FAs) inhibit C. acnes or mixed biofilm formation. PURPOSE: The antibacterial and antibiofilm activities of 24 saturated and unsaturated FAs were investigated against C. acnes as well as a mixture of the bacteria C. acnes and S. aureus. METHODS: Anti-biofilm assays, antimicrobial assays, confocal laser scanning microscopy, scanning electron microscopy, extracellular polymeric substance production, and microbial adherence to hydrocarbon assay were utilized to elucidate how active FAs influence biofilm development. RESULTS: Seventeen FAs at 20 µg/ml inhibited C. acnes biofilm formation by 60-99%. The minimum inhibitory concentrations (MICs) of 20 FAs were ≥ 500 µg/ml but 4 medium-chain FAs had MICs in a range 15 to 200 µg/ml. Interestingly, myristoleic acid inhibited biofilm formation at 1 µg/ml. Myristoleic acid also inhibited the formation of S. aureus and mixed C. acnes/S. aureus biofilms. FAs reduced C. acnes hydrophobicity and we found this was generally correlated with their antibiofilm forming efficacies. Transcriptional analyses showed that myristoleic acid modulates the expression of several biofilm-related genes such as lipase, hyaluronate lyase, and virulence-related genes. CONCLUSION: This study shows myristoleic acid and other FAs inhibit biofilm formation by C. acnes and mixed biofilm formation by C. acnes and S. aureus. Hence, myristoleic acid might be useful for treating or preventing acne and C. acnes associated diseases.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Ácidos Grasos Monoinsaturados/farmacología , Propionibacterium acnes/efectos de los fármacos , Staphylococcus aureus , Antibacterianos/farmacología , Matriz Extracelular de Sustancias Poliméricas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
4.
Biofouling ; 35(7): 758-767, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31505984

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections, which are one of the most common infectious disease types in humans. UPEC infections involve bacterial cell adhesion to bladder epithelial cells, and UPEC can also form biofilms on indwelling catheters that are often tolerant to common antibiotics. In this study, the anti-biofilm activities of t-stilbene, stilbestrol, t-resveratrol, oxyresveratrol, ε-viniferin, suffruticosol A, and vitisin A were investigated against UPEC. t-Resveratrol, oxyresveratrol, and ε-viniferin, suffruticosol A, and vitisin A significantly inhibited UPEC biofilm formation at subinhibitory concentrations (10-50 µg ml-1). These findings were supported by observations that t-resveratrol and oxyresveratrol reduced fimbriae production and the swarming motility in UPEC. Furthermore, t-resveratrol and oxyresveratrol markedly diminished the hemagglutinating ability of UPEC, and enhanced UPEC killing by human whole blood. The findings show that t-resveratrol, oxyresveratrol, and resveratrol oligomers warrant further attention as antivirulence strategies against persistent UPEC infections.


Asunto(s)
Biopelículas , Extractos Vegetales/farmacología , Resveratrol/farmacología , Estilbenos/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Escherichia coli Uropatógena/fisiología , Virulencia/efectos de los fármacos
5.
Phytomedicine ; 63: 153033, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31352284

RESUMEN

BACKGROUND: The emergence of antibiotic resistant microorganisms presents a worldwide problem that requires novel antibiotic and non-antibiotic strategies, and biofilm formation is a mechanism of drug resistance utilized by diverse microorganisms. The majority of microorganisms live in biofilms that help their survival against starvation, antimicrobial agents, and immunological defense systems. Therefore, it is important novel compounds be identified that inhibit biofilm formation and cell survival without drug resistance. STUDY DESIGN: In this study, the antimicrobial and antibiofilm activities of five prenylated flavanones (Okinawan propolins) isolated from fruits of Macaranga tanarius (L.) were investigated against 14 microorganisms including 10 pathogens. RESULTS: Of these five propolins, propolin D at 5-10 µg/ml significantly inhibited biofilm formation by three Staphylococcus aureus strains, a Staphylococcus epidermidis strain, and a Candida albicans with MICs from 10 to 50 µg/ml, and in C. albicans, propolin D was found to inhibit biofilm formation by reducing cell aggregation and downregulated the expressions of hypha/biofilm-related genes including ECE1 and HWP1. Interestingly, at sub-MIC concentrations (10-50 µg/ml), propolin D significantly inhibited biofilm formation by enterohemorrhagic E. coli O157:H7, uropathogenic E. coli O6:H1, and Acinetobacter baumannii without affecting planktonic cell growth, but did not inhibit biofilm formation by a commensal E. coli K-12 strain, three probiotic Lactobacillus plantarum strains, or two Pseudomonas aeruginosa strains. And, propolin D reduced fimbriae production by E. coli O157:H7 and repressed gene expression of curli fimbriae genes (csgA and csgB). Also, propolin D was minimally toxic in a Caenorhabditis elegans nematode model. CONCLUSION: These findings show that prenylated flavanones, especially propolin D from Macaranga tanarius (Okinawan propolis), should be considered potential candidates for the development of non-toxic antibacterial and antifungal agents against persistent microorganisms.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Euphorbiaceae/química , Flavanonas/farmacología , Flavonoides/farmacología , Animales , Antibacterianos/química , Antibacterianos/toxicidad , Antifúngicos/química , Antifúngicos/toxicidad , Biopelículas/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Evaluación Preclínica de Medicamentos , Escherichia coli O157/efectos de los fármacos , Flavanonas/química , Flavanonas/toxicidad , Flavonoides/química , Flavonoides/toxicidad , Pruebas de Sensibilidad Microbiana , Prenilación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Pruebas de Toxicidad
6.
ACS Infect Dis ; 5(7): 1177-1187, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31055910

RESUMEN

Candida albicans is an opportunistic pathogenic yeast and is responsible for candidiasis. It readily colonizes host tissues and implant devices, and forms biofilms, which play an important role in pathogenesis and drug resistance. In this study, the antibiofilm, antihyphal, and antivirulence activities of nepodin, isolated from Rumex japonicus roots, were investigated against a fluconazole-resistant C. albicans strain and against polymicrobial-microorganism-biofilm formation. Nepodin effectively inhibited C. albicans biofilm formation without affecting its planktonic cell growth. Also, Rumex-root extract and nepodin both inhibited hyphal growth and cell aggregation of C. albicans. Interestingly, nepodin also showed antibiofilm activities against Candida glabrata, Candida parapsilosis, Staphylococcus aureus, and Acinetobacter baumannii strains and against dual biofilms of C. albicans and S. aureus or A. baumannii but not against Pseudomonas aeruginosa. Transcriptomic analysis performed by RNA-seq and qRT-PCR showed nepodin repressed the expression of several hypha- and biofilm-related genes (ECE1, HGT10, HWP1, and UME6) and increased the expression of several transport genes (CDR4, CDR11, and TPO2), which supported phenotypic changes. Moreover, nepodin reduced C. albicans virulence in a nematode-infection model and exhibited minimal cytotoxicity against the nematode and an animal cell line. These results demonstrate that nepodin and Rumex-root extract might be useful for controlling C. albicans infections and multispecies biofilms.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/fisiología , Naftalenos/farmacología , Rumex/química , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/fisiología , Candida albicans/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Fluconazol/farmacología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hifa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Análisis de Secuencia de ARN , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Factores de Virulencia/genética
7.
Phytomedicine ; 36: 254-261, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29157822

RESUMEN

BACKGROUND: Bacterial biofilms exhibit reduced sensitivity to conventional antibiotics and host defence systems and contribute to the persistence of chronic bacterial infections. HYPOTHESIS: The antibiofilm approach using plant alkaloids provides an alternative to antibiotic strategies. STUDY DESIGN: In this study, the antibiofilm activities of various plant alkaloids were investigated against enterohemorrhagic Escherichia coli O157:H7 and Pseudomonas aeruginosa. In the subsequent investigation, the effects of five norharmane derivatives were investigated. RESULT: Harmaline significantly inhibited biofilm formation by E. coli O157:H7, P. aeruginosa PAO1, P. aeruginosa PA14, and Klebsiella oxytoca, and norharmane (ß-carboline) was found to have antibiofilm activity. It was also found that functional groups at the C-1 and C-7 positions of norharmane could play important roles in its antibiofilm activity. Confocal and electron microscopic observations confirmed biofilm inhibition by harmaline and norharmane, and both reduced fimbriae production and swarming and swimming motilities. Furthermore, harmaline and norharmane attenuated the virulence of E. coli O157:H7 in a Caenorhabditis elegans nematode model. CONCLUSION: These findings strongly suggest that harmaline and norharmane could have potential use in antibiofilm strategy against persistent bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Carbolinas/farmacología , Escherichia coli O157/efectos de los fármacos , Animales , Antibacterianos/química , Biopelículas/efectos de los fármacos , Caenorhabditis elegans/microbiología , Carbolinas/química , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli O157/patogenicidad , Escherichia coli O157/fisiología , Klebsiella oxytoca/efectos de los fármacos , Klebsiella oxytoca/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología
8.
Sci Rep ; 6: 36377, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808174

RESUMEN

Enterohemorrhagic Escherichia coli O157:H7 (EHEC) has caused foodborne outbreaks worldwide and the bacterium forms antimicrobial-tolerant biofilms. We investigated the abilities of various plant essential oils and their components to inhibit biofilm formation by EHEC. Bay, clove, pimento berry oils and their major common constituent eugenol at 0.005% (v/v) were found to markedly inhibit EHEC biofilm formation without affecting planktonic cell growth. In addition, three other eugenol derivatives isoeugenol, 2-methoxy-4-propylphenol, and 4-ethylguaiacol had antibiofilm activity, indicating that the C-1 hydroxyl unit, the C-2 methoxy unit, and C-4 alkyl or alkane chain on the benzene ring of eugenol play important roles in antibiofilm activity. Interestingly, these essential oils and eugenol did not inhibit biofilm formation by three laboratory E. coli K-12 strains that reduced curli fimbriae production. Transcriptional analysis showed that eugenol down-regulated 17 of 28 genes analysed, including curli genes (csgABDFG), type I fimbriae genes (fimCDH) and ler-controlled toxin genes (espD, escJ, escR, and tir), which are required for biofilm formation and the attachment and effacement phenotype. In addition, biocompatible poly(lactic-co-glycolic acid) coatings containing clove oil or eugenol exhibited efficient biofilm inhibition on solid surfaces. In a Caenorhabditis elegans nematode model, clove oil and eugenol attenuated the virulence of EHEC.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli O157/efectos de los fármacos , Eugenol/farmacología , Aceites Volátiles/farmacología , Animales , Caenorhabditis elegans/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli O157/genética , Escherichia coli O157/patogenicidad , Escherichia coli O157/fisiología , Proteínas de Escherichia coli/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Plancton , Aceites de Plantas/farmacología , Virulencia/efectos de los fármacos
9.
Phytomedicine ; 21(8-9): 1037-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24837471

RESUMEN

E. coli O157:H7 is the most common cause of hemorrhagic colitis, and no effective therapy exists for E. coli O157:H7 infection. Biofilm formation is closely related to E. coli O157:H7 infection and constitutes a mechanism of antimicrobial resistance. Hence, the antibiofilm or antivirulence approach provides an alternative to antibiotic strategies. Coumarin and its derivatives have a broad range of biological effects, and in this study, the antibiofilm activities of nine coumarins were investigated against E. coli O157:H7. Coumarin or umbelliferone at 50µg/ml was found to inhibit biofilm E. coli O157:H7 formation by more than 80% without affecting bacterial growth. Transcriptional analysis showed that coumarins repressed curli genes and motility genes in E. coli O157:H7, and these findings were in-line with observed reductions in fimbriae production, swarming motility, and biofilm formation. In addition, esculetin repressed Shiga-like toxin gene stx2 in E. coli O157:H7 and attenuated its virulence in vivo in the nematode Caenorhabditis elegans. These findings show that coumarins have potential use in antivirulence strategies against persistent E. coli O157:H7 infection.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cumarinas/farmacología , Escherichia coli O157 , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Umbeliferonas/farmacología , Animales , Biopelículas/crecimiento & desarrollo , Caenorhabditis elegans/efectos de los fármacos , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/patogenicidad , Escherichia coli O157/fisiología , Escherichia coli O157/ultraestructura , Perfilación de la Expresión Génica , Virulencia/efectos de los fármacos
10.
Int J Food Microbiol ; 174: 47-55, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24457153

RESUMEN

Infection by enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a worldwide problem, and there is no effective therapy. Biofilm formation is closely related to EHEC infection and is also a mechanism of antimicrobial resistance. Antibiofilm screening of 560 purified phytochemicals against EHEC showed that ginkgolic acids C15:1 and C17:1 at 5µg/ml and Ginkgo biloba extract at 100µg/ml significantly inhibited EHEC biofilm formation on the surfaces of polystyrene and glass, and on nylon membranes. Importantly, at their working concentrations, ginkgolic acids and G. biloba extract did not affect bacterial growth. Transcriptional analyses showed that ginkgolic acid C15:1 repressed curli genes and prophage genes in EHEC, and these findings were in-line with reduced fimbriae production and biofilm reductions. Interestingly, ginkgolic acids and G. biloba extract did not inhibit the biofilm formation of a commensal E. coli K-12 strain. In addition, ginkgolic acids and G. biloba extract inhibited the biofilm formation of three Staphylococcus aureus strains. The findings of this study suggest that plant secondary metabolites represent an important resource for biofilm inhibitors.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli O157/efectos de los fármacos , Ginkgo biloba/química , Extractos Vegetales/farmacología , Salicilatos/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli K12/efectos de los fármacos , Escherichia coli O157/genética , Escherichia coli O157/fisiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Staphylococcus aureus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA