Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 9061, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28831082

RESUMEN

In this study, a two-step surface treatment was developed to restrain the rapid primary degradation of a biodegradable Mg alloy and to improve their biocompatibility. Micro arc oxidation (MAO) coating was performed in alkaline electrolytes such as 1.0 M NaOH with 0.1 M glycerol and 0.1 M Na3PO4. Hydrothermal treatment was performed in 0.1 M Ca-EDTA (C10H12CaN2Na2O8) and 0.5 M NaOH solution at 90 °C for different times (6, 12, 24, and 48 h). The film morphology and chemical properties were evaluated by XRD and FE-SEM. The electrochemical and corrosion behaviors were examined in the simulated body fluid, and cytotoxicity was assessed using MC3T3-E1 cells. After MAO coating, an oxide layer containing [Formula: see text] formed on the surface. During the hydrothermal treatment in Ca-EDTA solution, calcium phosphate and Mg(OH)2 were produced via a reaction between [Formula: see text] on the surface and Ca2+ in solution. The layer with ceramics and oxides was grown on the surface with increasing hydrothermal treatment time, and improved the surface corrosion resistance. The 24 h hydrothermal-treated group showed the lowest immersion corrosion rate and high cell viability. Therefore, this treatment was the most favorable surface modification for improving the initial corrosion resistance and bioactivity of the biodegradable Mg alloy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-24078827

RESUMEN

The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.

3.
Artículo en Inglés | MEDLINE | ID: mdl-22675386

RESUMEN

Background. Electro Acupuncture (EA) uses the acupuncture needle as an electrode to apply low-frequency stimulation. For its safe operation, it is essential to prevent any corrosion of the acupuncture needle. Objective. The aim of this study is to find an available material and determine the possibility of producing a standard EA needle that is biocompatible. Methods. Biocompatibility was tested by an MTT assay and cytotoxicity testing. Corrosion was observed with a scanning electron microscope (SEM) after 0.5 mA, 60 min stimulation. The straightness was measured using a gap length of 100 mm, and tensile testing was performed by imposing a maximum tensile load. Results. Phosphor bronze, Ni coated SS304, were deemed inappropriate materials because of mild-to-moderate cytotoxicity and corrosion. Ti-6Al-4V and SS316 showed no cytotoxicity or corrosion. Ti-6Al-4V has a 70 times higher cost and 2.5 times lower conductivity than SS316. The results of both straightness and tensile testing confirmed that SS316 can be manufactured as a standard product. Conclusion. As a result, we confirmed that SS316 can be used a new EA electrode material. We hope that a further study of the maximum capacity of low-frequency stimulation using an SS316 for safe operation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA